國立臺灣師範大學107學年度碩士班招生考試試題

科目:機率與統計

適用系所: 數學系

注意:1.本試題共1頁,請依序在答案卷上作答,並標明題號,不必抄題。2.答案必須寫在指定作答區內,否則依規定扣分。 3.答案必須有計算過程,否則會斟酌扣分。

- 1. $(20 \, \hat{\sigma})$ Let X_1, \dots, X_n be independent and identically distributed Uniform (0,1) random variables. We say that a **record** occurs at position $i, i \leq n$, if $X_j \leq X_i$ for all $1 \leq j \leq i$.
 - (a) Let $R_i = 1$ if a record occurs at position i and 0 otherwise. Find the probability distribution of R_i .
 - (b) Find the mean and variance of the number of records.
- 2. (20\$\(\phi\)) Let $Y = e^X$ where X is normally distributed with mean μ and variance σ^2 .
 - (a) Find the probability density function of Y.
 - (b) Find the expectation of Y.
 - (c) Find the variance of Y.
 - (d) Find the mode of the distribution of Y.
- 3. (20 $\hat{\pi}$) Consider the joint distribution of two random variables (X, Y). Suppose that the density function of X is $f(x) = \theta e^{-\theta x}$, $x \ge 0$, $\theta > 0$, and given X = x, the conditional distribution of Y is $f(y|x) = e^{-\beta x}(\beta x)^y/y!$, $y = 0, 1, \dots, x \ge 0, \beta > 0$.
 - (a) Find the marginal probability density function of Y.
 - (b) Find E(Y), Var(Y) and Cov(X, Y).
- 4. $(20\hat{\pi})$ Let X be a random variable having probability density function $f(x;\theta) = \theta x^{\theta-1}$, 0 < x < 1. To test $H_0: \theta \le 1$ against $H_1: \theta > 1$, the critical region $C = \{x: \frac{9}{10} \le x\}$ was used.
 - (a) Find the power function of the test.
 - (b) Find the size of the test.
- 5. (20 $\hat{\pi}$) For a simple linear regression model with no intercept: $Y_i = \beta x_i + \varepsilon_i$ where ε_i for $i = 1, \dots, n$ are independent and $\mathcal{N}(0, \sigma^2)$.
 - (a) Find the maximum likelihood estimators of β and σ^2 .
 - (b) Assume that β and σ^2 are both unknown. Derive the likelihood ratio test for $H_0: \beta = 0$ against $H_1: \beta \neq 0$.