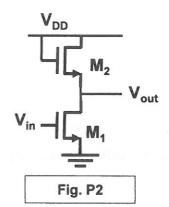
國立中正大學107學年度碩士班招生考試試題

電磁晶片組

系所別

電機工程學系-計算機工程組

晶片系統組


光機電整合工程研究所

第2節

第1頁,共2頁

科目:電子學

- 1. In each of the following statements, determine whether the statement is **True** or **False**. **Describe your reasons to support your choices**.
- (a) By using negative feedback, voltage amplifiers are less sensitive to variations in the amplifier's open-loop gain. (5%)
- (b) In amplifiers employing negative feedback, frequency compensation is a technique used to extend the closed-loop bandwidth. (5%)
- (c) For a single-pole operational amplifier, the gain bandwidth product is a constant. (5%)
- 2. Consider the amplifier shown in Fig. P2,
 - (a) Draw the large signal behavior of V_{out} versus V_{in} (8%)
 - (b) Draw the small signal equivalent circuit (8%)
 - (c) Derive the voltage gain V_{out}/V_{in} (2%)
 - (d) How to maximize the voltage gain? (2%)

3. For the amplifier described by the open-loop transfer function A(s) as below, where $p1 = 10^5$ Hz, $p2 = 10^6$ Hz, $p3 = 10^7$ Hz, this amplifier is used with a frequency-independent feedback network β .

$$A(s) = 10^5 / \left(1 + \frac{s}{p_1}\right) \left(1 + \frac{s}{p_2}\right) \left(1 + \frac{s}{p_3}\right)$$

(a) Draw the Bode plots (both magnitude and phase plots) of A(s)

(8%)

(b) What is the closed-loop voltage gain that can be obtained for phase margin of 72°? (7%)

國立中正大學107學年度碩士班招生考試試題

電磁晶片組

系所別:

電機工程學系-計算機工程組

晶片系統組

光機電整合工程研究所

第2節

第2頁,共2頁

科目:電子學

4. Find the close-loop gain of the feedback current amplifier shown in Fig. P4 in case the transconductance is 4 mA/V for $\rm Q_1$ and $\rm Q_2$ while ignoring channel length modulation. (15%)

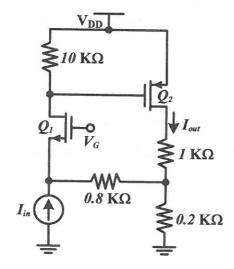
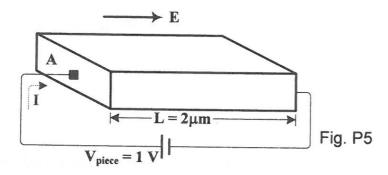
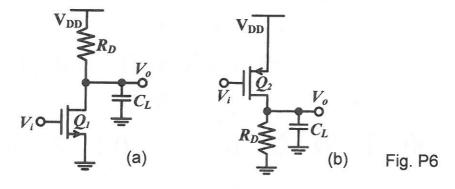




Fig. P4

- 5. A piece of n-type silicon with uniform doping concentration $N_D = 10^{17}/cm^3$ is fabricated. If we have a voltage of 1 V across it as shown in Fig. P5, using $n_i = 1.5 \times 10^{10}/cm^3$, $\mu_p = 480$ cm²/V·s, and $\mu_n = 1350$ cm²/V·s to answer the following questions:
 - (a) What kind of current is produced? (3%)
 - (b) Compute the total current density. (6%)
 - (c) Compute the resistivity of this n-type silicon. (6%)

- 6. For the circuits shown in Fig. P6, assume V_{DD} = 1.8 V, $\mu_n C_{ox}$ = 100 μ A/V², $\mu_p C_{ox}$ = 50 μ A/V², V_{tn} = $|V_{tp}|$ = 0.4 V, λ =0 V⁻¹, (W/L)_{Q1} = 50, (W/L)_{Q2} = 100, and R_D = 1 K Ω .
 - (a) Please sketch the voltage transfer characteristic (VTC) for each circuit in Fig. P6. (2%)
 - (b) Assume that input (V_i) has zero rise/fall time and the output time constant is 50 ps for Fig. P6(a), compute the load capacitance and the corresponding low-to-high propagation delay. (6%)
 - (c) Assume $V_i = 0$ V for the circuit shown in Fig. P6(b), compute the output voltage level. (6%)
 - (d) For the situation in (c), compute the static power consumption. (6%)

