國立中山大學 107 學年度碩士暨碩士專班招生考試試題

科目名稱:線性代數【通訊所碩士班甲組】

題號:437006

※本科目依簡章規定「可以」使用計算機(廠牌、功能不拘)(混合題)

共2頁第1頁

In the following, boldface capital and lower-case letters denote matrices and vectors, respectively. For questions 1~3, please select the best answer from the choices provided. (單選)

For questions 4~13, please provide both answers and justifications.

- 1. (5%) Suppose a 4×5 matrix **A** has rank 4. Then the equation $\mathbf{A}\mathbf{x} = \mathbf{b}$
 - (a) always has a unique solution.
 - (b) always has no solution.
 - (c) always has many solutions.
 - (d) sometimes but not always has a unique solution.
 - (e) sometimes but not always has many solutions.
- 2. (5%) Suppose a 3×5 matrix **A** has rank 3.
 - (a) The orthogonal complement of the range space of A is a 3-dimensional space.
 - (b) The null space of A is a 3-dimensional space.
 - (c) The column space of A is a 3-dimensional space.
 - (d) The kernel of A is a 3-dimensional space.
 - (e) The orthogonal complement of the kernel of A has dimension 2.
- 3. (5%) Which of the following matrices is a linear combination of $\begin{bmatrix} 3 & -1 \\ 5 & 2 \end{bmatrix}$, $\begin{bmatrix} -1 & 0 \\ 2 & 1 \end{bmatrix}$, and $\begin{bmatrix} 2 & 1 \\ 0 & 3 \end{bmatrix}$?

 (a) $\begin{bmatrix} 2 & 3 \\ -4 & 4 \end{bmatrix}$ (b) $\begin{bmatrix} 1 & 1 \\ -1 & 1 \end{bmatrix}$ (c) $\begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix}$ (d) $\begin{bmatrix} -4 & 6 \\ -13 & 4 \end{bmatrix}$ (e) $\begin{bmatrix} 3 & -1 \\ 8 & 2 \end{bmatrix}$.
- 4. (10%) Let **A** and **B** be 3×3 matrices with $\det(\mathbf{A}) = 5$, $\det(\mathbf{B}) = 10$, and $\det(\mathbf{A}+\mathbf{B}) = 60$. Decide the following values.
 - (a) $(5\%) \det(A+A)$.
 - (b) $(5\%) \det(A^2B + AB^2)$.
- 5. (10%) Let A be an 2x2 real symmetric matrix

$$\mathbf{A} = \begin{bmatrix} 2 & -2 \\ -2 & 5 \end{bmatrix}.$$

- (a) (5%) Find $A^{\frac{1}{2}}$.
- (b) (5%) $F(x) = \frac{x^T Ax}{x^T x}$, find the maximum and minimum values of F(x) over the set of nonzero vectors in \mathbb{R}^2 .
- 6. (10%) Let dim(Z) denote the dimension of the vector space Z and rank(C) denote the rank of the matrix C. Show that:
 - (a) (5%) If X and Y are subspaces of a vector space V, then $\dim(X+Y)=\dim(X)+\dim(Y)-\dim(X\cap Y)$.
 - (b) (5%) rank(A+B) \leq rank(A)+ rank(B) where A and B are $m \times n$ matrices. (Hint: use the result in (a))
- 7. (5%) Given the following matrix:

$$\begin{bmatrix} 2 & 1-i \\ 1+i & 1 \end{bmatrix}.$$

Determine whether it is Hermitian, unitary, singular and positive definite.

Please explain your reasons to each answer.

國立中山大學 107 學年度碩士暨碩士專班招生考試試題

科目名稱:線性代數 【通訊所碩士班甲組】

題號: 437006

※本科目依簡章規定「可以」使用計算機(廠牌、功能不拘)(混合題)

共2頁第2頁

8. (5%) Let $\mathbf{u}_1 = (1,1,1)^T$, $\mathbf{u}_2 = (1,2,2)^T$, $\mathbf{u}_3 = (2,3,4)^T$.

(a) (2%) Find the transition matrix corresponding to the change of basis from $[e_1, e_2, e_3]$ to $[\mathbf{u}_1, \mathbf{u}_2, \mathbf{u}_3]$.

(b) (3%) Find the coordinates of $(2,3,2)^T$ with respect to $[\mathbf{u}_1,\mathbf{u}_2,\mathbf{u}_3]$.

9. (10%) Suppose that A is a 5×3 real matrix of rank 3.Let $W = A^T A$ and $S = AA^T$.

(a) (3%) Find the ranks of W and S.

(b) (3%) Explain why $\lambda = 0$ is an eigenvalue of S.

(c) (4%) What is the (algebraic) multiplicity of the eigenvalue $\lambda = 0$ of S?

10. (5%) Find the Jordan canonical form of

$$\mathbf{A} = \begin{bmatrix} 1 & 1 & 0 & 0 \\ 0 & 1 & 0 & 2 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}.$$

11. (10%) Let **M** be the vector space of all (3×3) real-valued matrices over the real field. Let **T**: $\mathbf{M} \rightarrow \mathbf{M}$ be a linear transformation given by

$$T(X) = AX$$
, where $A = \begin{bmatrix} 2 & 1 & -1 \\ 1 & 2 & 1 \\ -1 & 1 & 2 \end{bmatrix}$.

(a) (5%) Find a basis for the kernel of T.

(b) (5%) For each eigenvalue of T, find a basis for the corresponding eigenspace.

12. (10%) If
$$\mathbf{K} = \begin{bmatrix} 1 & 2 & 2^2 & 2^3 & 2^4 & 2^5 \\ 2 & 1 & 2 & 2^2 & 2^3 & 2^4 \\ 2^2 & 2 & 1 & 2 & 2^2 & 2^3 \\ 2^3 & 2^2 & 2 & 1 & 2 & 2^2 \\ 2^4 & 2^3 & 2^2 & 2 & 1 & 2 \\ 2^5 & 2^4 & 2^3 & 2^2 & 2 & 1 \end{bmatrix}$$
, find det(\mathbf{K}).

13. (10%) On $P_2(R)$, consider the inner product given by $\langle p, q \rangle = \int_0^1 p(x)q(x)dx$.

(a) (5%) Show that the basis $(1, x, x^2)$ is NOT orthonormal.

(b) (5%) Apply the Gram-Schmidt procedure to $(1, x, x^2)$ to produce an orthonormal basis of $P_2(R)$. Note that $P_2(R)$ is the set of all polynomials of degree 2 with real valued coefficients.