國立中山大學 107 學年度碩士暨碩士專班招生考試試題

科目名稱:通訊理論【通訊所碩士班甲組、乙組選考】

題號: 437002

※本科目依簡章規定「可以」使用計算機(廠牌、功能不拘)(問答申論題)

共3頁第1頁

1. (10%) A double-sideband amplitude modulation (AM) transmitted signal can be expressed as

$$u(t) = 2\left[1 + \pi \sin 2\pi t\right] \cos \left(2\pi f_c t + \phi_c\right),\,$$

where f_c is the carrier frequency and ϕ_c is the phase. Can a simple envelope detector perfectly detect the message of $\pi \sin 2\pi t$? Explain your answer.

2. (10%) A binary PSK demodulation and detection receiver with a carrier phase error ϕ_e is considered, and the error probability can be expressed as

$$P(\phi_e) = Q\left(\sqrt{\frac{2E_b}{N_0}\cos^2\phi_e}\right),\,$$

where $Q(x) = \frac{1}{\sqrt{2\pi}} \int_{x}^{\infty} \exp\left(\frac{-u^2}{2}\right) du$. Assume that the probability density function (PDF) of ϕ_e is

 $p(\phi_e) = \frac{1}{\sqrt{2\pi}\sigma_{\perp}} e^{\frac{-\phi_e^2}{2\sigma_{\phi_e}^2}}$. Decide the expression for the average error probability in an integral form.

(25%) If two equiprobable messages of $s_1(t)$ and $s_2(t)$ are transmitted over an AWGN channel with the noise power spectral density of $N_0/2$, the error probability can be expressed as

$$P_e = Q\left(\sqrt{\frac{d^2}{2N_0}}\right),\,$$

 $P_e = Q\left(\sqrt{\frac{d^2}{2N_0}}\right),$ where $d^2 = \int_{-\infty}^{\infty} \left(s_1(t) - s_2(t)\right)^2 dt$. Now, we further consider the case that $s_1(t) = u(t)$ and $s_2(t) = u(t-1)$, where u(t) is shown in Fig. 1. Answer the following questions.

- (a). (10%) Plot the diagram of an optimal matched filter receiver for the system. Explicitly label the required parameters.
- (b). (5%) Decide the error probability for the system.
- (c). (10%) Consider $s_1(t) = u(t)$ and $s_2(t) = \begin{cases} u(t-1) & \text{with probability 0.5} \\ u(t) & \text{with probability 0.5} \end{cases}$. Determine the optimum detection rule.

Fig. 1

國立中山大學 107 學年度碩士暨碩士專班招生考試試題

科目名稱:通訊理論【通訊所碩士班甲組、乙組選考】

題號: 437002

※本科目依簡章規定「可以」使用計算機 (廠牌、功能不拘) (問答申論題) 共3頁第2頁

4. (20%) A carrier-modulated signal of $x(t) = a(t) \cos(w_c t + \theta(t))$ can be transformed into an equivalent baseband signal, as shown in Fig. 2.

If $x(t) = \operatorname{sinc}(10^5 t) \cos(2\pi 10^6 t) + \operatorname{sinc}(10^5 t) \sin(2\pi 10^6 t)$, answer the following questions.

- (a). (10%) Decide the values of w_c , a(t), and $\theta(t)$.
- (b). (10%) Determine $x_b(t)$ and $x_A(t)$

Fig. 2. Transform a passband signal to a baseband signal.

5. (15%) For a binary communication system shown in Fig. 3, the receiver obtains the two corrupted signals, y_1 and y_2 , where two noises, n_1 and n_2 , are not necessarily Gaussian distributions. The maximum a posteriori probability (MAP) receiver can be used to optimally detect the transmitted signal s from the observed signals, y_1 and y_2 , i.e., $\hat{s} = \max_s p(s | y_1, y_2)$. If n_1 and n_2 are independent, can the optimum decision be based only on y_1 (i.e., $\hat{s} = \max_s p(s | y_1, y_2) = \max_s p(s | y_1)$)? Please justify your answer.

6. (20%) Denote x(t) and y(t) as the two bandpass real signals, and $x_L(t)$ and $y_L(t)$ are the corresponding lowpass equivalents with respect to the carrier frequency f_0 . Thus, they have the

國立中山大學 107 學年度碩士暨碩士專班招生考試試題

科目名稱:通訊理論【通訊所碩士班甲組、乙組選考】

題號:437002

※本科目依簡章規定「可以」使用計算機(廠牌、功能不拘)(問答申論題)

共3頁第3頁

following relations in frequency domain:

$$X(f) = \frac{1}{2}X_L(f - f_0) + \frac{1}{2}X_L^*(-f - f_0)$$

and

$$Y(f) = \frac{1}{2}Y_L(f - f_0) + \frac{1}{2}Y_L^*(-f - f_0),$$

where X(f), Y(f), $X_L(f)$, and $Y_L(f)$, are the frequency responses of x(t), y(t), $x_L(t)$, and $y_L(t)$, respectively.

- (a). (15%) Assume $X_L(f-f_0)$ and $Y_L(-f-f_0)$ do not overlap. Show that $\int_{-\infty}^{\infty} x(t)y(t)dt = \frac{1}{2}\operatorname{Re}\left\{\int_{-\infty}^{\infty} x_L(t)y_L^*(t)dt\right\}, \text{ where } \operatorname{Re}\{X\} \text{ represents the real part of the complex number } X. \text{ Hint: Use Parseval's relation } \int_{-\infty}^{\infty} x(t)y(t)dt = \int_{-\infty}^{\infty} X(f)Y^*(f)df.$
- (b). (5%) Prove that the energy in a bandpass signal is just one-half the energy in its lowpass equivalent.