國立中山大學 107 學年度碩士暨碩士專班招生考試試題 科目名稱:熱力學【材光系碩士班乙組】 題號: 439006 ※本科目依簡章規定「可以」使用計算機 (廠牌、功能不拘) (問答申論題) 共2頁第1頁 請於答案卷上依序做答,並清楚標明題號 - 1. (25%) (a, 4%) The thermodynamic properties U, H, A and G are known of the variables, T, S, P and V. For a homogeneous fluid of constant composition, there are four fundamental property relations. Write down the four relations of dU, dH, dA and dG. (b, 2%) Define the heat capacity at constant volume (C_v) and at constant pressure (C_p) . (c, 5%) The complete differential internal energy U can be written in terms of the partial derivative $dU = \left(\frac{\partial U}{\partial V}\right)_T dV + \left(\frac{\partial U}{\partial T}\right)_v dT$, derive the relation $C_p = C_v + R$ for one mole of ideal gas. (d, 5%) Define the partial molar property $(\overline{M_i})$, the chemical potential (μ_i) , the fugacity (f_i) , the activity (a_i) and activity coefficient (r_i) of species i in a solution. (e, 4%) Define the Raoult's law and Henry's law, respectively. (f, 5%) Draw two schematic figures that illustrate the vapor pressure of a component of a binary solution (A-B) exhibiting positive deviation and negative deviation from Raoultian behavior, respectively. - 2. (25%) (a, 5%) Draw a schematic *T-x* (temperature-composition) phase diagram for a binary A-B system with one liquid phase (L), two terminal solid phases (α and β), one eutectic reaction and one peritectic reaction. Please label all phase regions. (b, 5%) Figure 1 shows the Ag-Sb binary phase diagram. Please calculate the change of entropy (ΔS) when 100 grams of pure silver (Ag) is mixing with 5 grams of pure antimony (Sb), to form a homogeneous binary alloy. The atomic weights of Ag and Sb are 107.9 (g/mol) and 121.7 (g/mol), respectively. (c, 5%) Write down the eutectic reaction and the peritectic reaction in figure 1 at 485 ° C (T₁) and 702.5 ° C (T₂), respectively. (d, 5%) Sketch the Gibbs free energies of mixing (ΔG^{mix}) for the liquid and phases (i.e., the (Ag), (Sb), ε and ζ) as a function of composition at temperatures T₁ and T₂. (e, 5%) Sketch the activities (a_i) of Ag and Sb as a function of composition at temperatures T₁ and T₂. Note that the standard state of each case needs to be given. - 3. (15%) A rigid and isolated container with volume of 10 (Liter, L) is divided by a divider into two parts: 2.5 (L) and 7.5 (L). At very beginning, one part (2.5 (L)) is filled with one mole of A gas at 300 K and 1 bar; while the other part (7.5 (L)) is filled with two moles of B gas at 600 K. And both A and B gases follow the ideal gas law. As the divider is removed, A and B gases are allowed to mix together. Please calculate the following terms: (a, 3%) the temperature of gas mixture. (b, 3%) the pressure of gas mixture. (c, 3%) the change in entropy. (d, 3%) the change in Gibbs free energy. (e, 3%) the change in enthalpy. (Note: C_p=3.5R and C_v=2.5R, R=8.3146 m³PaK⁻¹mol⁻¹, 1 bar=10⁵ pa). - 4. (15%) A Carnot engine, rated at 10⁵ kW, generates steam from a heat reservoir at 800 K and discards heat to a cold reservoir at 300 K. (a, 5%) What is the entropy change of the heat reservoir at 300K? (b, 5%) What is the rate at which heat is absorbed from the heat reservoir and discarded to the cold reservoir? (c, 5%) A practical engine operates between the same heat and cold reservoirs but with an efficiency which is 50% of that of a Carnot engine. ## 國立中山大學 107 學年度碩士暨碩士專班招生考試試題 科目名稱:熱力學【材光系碩士班乙組】 題號:439006 ※本科目依簡章規定「可以」使用計算機(廠牌、功能不拘)(問答申論題) 共2頁第2頁 5. (20%) A steel casting weighing 4 kg has an initial temperature of 400°C; 40 kg of water initially at 25°C is contained in a perfectly insulated steel tank weighing 5 kg. The steel casting is immersed in the water and the system is allowed to reach equilibrium. (a, 5%) What is the final equilibrium temperature? (b, 5%) What is the entropy change of the steel casting? (c, 5%) What is the entropy change of the water? (d, 5%) what is the *total* entropy change (△St)? (Note: Cp,steel=0.5 (kJ/kg) and Cp,water=4.2 (kJ/kg)). | | Conversion factors and gas constant | |--------------|--| | Pressure | 1 bar= 10^5 Kgm ⁻¹ S ⁻² = 10^5 Pa=0.986923 atm= 14.5038 psia =0.986923 atm | | Energy | $1 \text{ J}= 1 \text{Kgm}^2 \text{s}^{-2} = 1 \text{Nm} = 1 \text{m}^3 \text{Pa} = 0.239006 \text{ cal}$ | | Gas constant | $R = 8.314 \text{ Jmol}^{-1}\text{K}^{-1} = 8.314 \text{ m}^{3}\text{Pamol}^{-1}\text{K}^{-1} = 83.14 \text{ cm}^{3}\text{barmol}^{-1}\text{K}^{-1}$ |