
B AR LALE

Bt LARE T EFERTBRATRERELRIA

FHEEM st ARER [EhiALIECA] B 431007
MEAABMMERE "To, RIS (BU% - AEF#H) (MEFHRM) HA3AF1RA

1.

[15%] Complete the calculations of the following two numbers, X=134.0625, Y=-1 8

(a) [5%] Represent X and Y using IEEE 754 single precision format, respectively

(b) [5%] Add X and Y, and represent the result using IEEE 754 single precision format

(¢) [5%] Multiply X and Y, and represent the result using IEEE 754 single precision format

[20%] Translate the following C code to the minimum MIPS assembly instructions
int A[30], B[30];

for (i=1; i <30; i++) {

Ali] = A[i] - BIA[i-1]]+;

} .
At the beginning of this code segment, the only values in registers are the base address of arrays A

and B in registers $al and $a2. Assume that the values of i is stored in the register $s0

[20%] Figure 1 shows a complete datapath with control for MIPS CPU.
@

(b)
©

instruction (e.g., addi $s3, $s3, 1) step-by-step.
instruction (e.g., j L1) step-by-step.

32($s3)) step-by-step.

[5%] Explain in detail how the architecture shown in Figure 1 is used to execute an I-type
[5%] Explain in detail how the architecture shown in Figure 1 is used to execute a jump

[5%] Describe in detail how this architecture is used to execute a load instruction (e.g., Iw $t0,

(d) [5%] Explain in detail how the architecture shown in Figure 1 is used to execute a branch
instruction (e.g., beq $t0, $s5, Exit) step-by-step.
Instruction [25-0] . Jump address [31-0]
! [shift\,
- \left2/ .
" 26 28 |pC+4[31-28] 6) Lo
| . m M
Add ® T~ u u
X
R ALU
4 PAAd i 1
RegDst /,
Jump
Branch
MemRead
Instruction [31-26) MemtoReg
Control ALUOp
MemWrite
| ALUSrc
RegWrite
Instruction [25-21] Read
Read register 1 gaaqg r
address ea
Instruction [20-16] Read data 1
Instruction {1 7 | register2 ALU Zero
[31'_0] M| wiite Read (0 4 r?s,ﬁLli p>| Address %‘Zﬁg (1
Instruction | |} insiruction [15-11]) ¥ || register data 2 M M
memory {1 u X
Write - 1" 0
data ister: .
Registers Write DPata
data ‘memory
Instructi 16-0 16 m 32 .
nstruction [16-0] Nl i'tgnd - ALU I
E en / M\control
Instruction [5--0) l

Figure 1: Architecture for Problem 3

o8 CF 5 oe

Bav L Ak2 07T 25ERLEEL S L L0308

#ABEMHE HERER [ERhARTHECA]) JA5E 431007
MAFBRMERE "Tol, ERTHESR B iR #) (A PHME) #A3HE2E

4. [20%] Design of a pipelined-CPU

(a) [5%] Explain the functions of the five pipeline stages of the pipelined MIPS CPU, respectively.

(b) [6%] Use examples to explain the three types of hazards of the pipelined MIPS CPU,
respectively.

(¢) [9%] Explain in detail how we can solve the three types of hazards of the pipelined MIPS CPU

based on the architecture shown in Figure 2, respectively.

_::L [gonzord) ID/EX.MemRead

unlt
£
3 ID/EX
£ /\ . l’*_"f | ExMEM
o Control u M W MEM/WB
¢ = L] o
2 IF{D 0 - EX I M WB|—
3] i =7 il o
o
s
Wi
u
S X
‘g Reglstors % T
ALU
pcl,| Instruction 15| (M) >
memory ™ M Data
u memory
X
IF/ID.RegisterRs .
IF/D.RegisterRt
|F/ID.RegisterRt Rt l\l.:l
IF/ID.RegisterRd Rd
L ID/EX.RogistorAt — \XJ - —
| unit /

Figure 2: Architecture for Problem 4

5. [25%] Cache memory
(a) [4%] Explain what two localities of memory data are and give examples, respectively.

(b) [2%] Explain how a hierarchical memory system takes advantage of localities.
(c) [4%] What are the advantages and disadvantages of SRAMs and DRAMs, respectively? How
are they used in a hierarchical memory system, respectively?
(d) [15%] For a cache with 4 blocks, complete the cache access results for a direct mapped cache,
a 2-way set associative cache and a fully associative cache, respectively, shown in the three
tables shown below. Please draw these three tables in your answer papers and fill in your
answers. Note that in this problem the least recently used block replacement policy is assumed.

SHEAEL] FEBEEZEA— R AZHNSENEREETHEALES AT
4o HBAME A EERTFHS o

I I RXT LN

Btk 10T RFREATEALEHER AL NRM

B AR AAEH [ThAFLETE]
MAABRBERE "TR, FEAFES (R~ %ﬁﬁ*#]) (REYaE)

A% - 431007
£3RF 3R

Table 1: Direct mapped cache
Block Cache conte.nt after access
address Cache index Hit/miss (Mem|x] where x is the block address)
0 1 2 3
4
2
4
1
3
5
3
1
Table 2: 2-way set associative cache
Block Cache conte.nt after access
address Cache index Hit/miss (Mem|[x] where x is the block add;ess)
Set 0 Set 1
4
2
4
1
3
5
3
1
Table 3: fully associative cache
Block Hit/miss " Cache content after access
address (Mem[x] where x is the block address)
4
2
4
1
3
5
3
1

