國立中山大學 107 學年度碩士暨碩士專班招生考試試題

科目名稱:工程數學乙【電機系碩士班乙組】

題號:431001

※本科目依簡章規定「可以」使用計算機 (廠牌、功能不拘)(問答申論題) 共2頁第1頁

第1至4題請照下列指示作答

- 所有對定義或問答題的做答,都要用該題目所給定的、和線性代數課程中所學的數學符號(包含∃和 ∀的使用),完全正確回答才給分。
- \blacksquare 對於集合的數學描述要完整且完全正確才給分。例如用集合 $\{s \in \mathbb{C} \mid s = \sigma + j\omega, \ \sigma > 0 \ and \ \omega \in \mathbb{R}\}$ 表示複數平面的開右半平面。
- 所有需要推導或證明的子題都已用粗體標示出來,其他子題都只需用數學符號(而非用文字敘述)明確且精簡地做答,否則不予計分。
- 占分"≤2%"的證明題要完全正確才給分。占分"≥3%"的證明題才會給部分成績。
- 1. (12%) Let $A \in \mathbb{R}^{m \times n}$ and $\mathbf{b} \in \mathbb{R}^m$.
- (a) (2%) (i) What is the mathematic relationship of dimensions of two subspaces R(A) and N(A) for any A matrix considered here? (ii) What is the mathematic relationship described in the Fundamental Subspaces Theorem about matrix A?
- (b) (2%) Use the Fundamental Subspaces Theorem to show that $N(A^TA) \subset N(A)$.
- (c) (2%) (i) What is the condition on R(A) or N(A) that is equivalent to the existence of solution to $A\mathbf{x} = \mathbf{b}$? (ii) What is the condition on R(A) or N(A) that is equivalent to the uniqueness of solution to $A\mathbf{x} = \mathbf{b}$, if it is solvable?
- (d) (2+4%) When the equation $A\mathbf{x} = \mathbf{b}$ is unsolvable, we may consider the so-called least squares problem to find a set of solutions, having the least squares error, from solving a normal equation. (i) Use the property and condition mentioned in (b)-(c) to explain why the normal equation is always solvable. (ii) Suppose that $rank(A) = k < \min(m, n)$ and let A = BC be a full rank decomposition of A. Use the known matrices B, C, and \mathbf{b} to describe the unique projection vector \mathbf{p} of \mathbf{b} onto R(A) with the least $\|\mathbf{b} \mathbf{p}\|_2$.
- 2. (13%) Let V be a vector space.
- (a) (1+2%) Let δ be a unit element of "+", the addition operation of V. (i) Write the equality condition about δ as shown in the corresponding axiom. (ii) Let γ be another unit element of "+". Show that $\delta = \gamma$. (須註明使用到的所有向量空間定義中的公設,否則不計分)
- (b) (3%) Let X and Y be two subspaces of V. (i) Write the definition of X+Y. (ii) Write the definition of $X \oplus Y$. (iii) What is the mathematical relationship between $\dim(X+Y)$ and $\dim(X \oplus Y)$?
- (c) (2%) Let $\langle \bullet, \bullet \rangle$ be an inner product defined on V. Show that the function $f(\mathbf{v}) := \sqrt{\langle \mathbf{v}, \mathbf{v} \rangle}$ defined $\forall \mathbf{v} \in V$ satisfies the triangular inequality property.
- (d) (2+3%) Consider the vector space $\mathbb{R}^{2\times 2}$ with the inner product $\langle A,B\rangle := trace(A^TB)$ and denote $Y := \{A \in \mathbb{R}^{2\times 2} | A = A^T\}$. (i) Describe Y^\perp as the span of an orthonormal basis. (ii) What is the matrix, denoted by P_{Y^\perp} , that represents the orthogonal projecting operation $\Pi_{Y^\perp} : \mathbb{R}^{2\times 2} \to Y^\perp$ along with the subspace Y with respect to the ordered basis $E = \{G, H\}$, where G and H are vectors of the standard bases for Y and Y^\perp , respectively?
- 3. (14%) Let L be a mapping from vector space V to vector space W.
- (a) (1+2%) (i) Write the definition of superposition principle and (ii) show the implication from the combination of additive and homogeneous properties to the superposition principle.
- (b) (2%) Write (i) the definition of Ker(L), the kernel of L, and (ii) the definition of L(V), the image of vector space V, respectively.

背面有題 試題隨卷繳回

國立中山大學 107 學年度碩士暨碩士專班招生考試試題

科目名稱:工程數學乙【電機系碩士班乙組】

題號: 431001

※本科目依簡章規定「可以」使用計算機(廠牌、功能不拘)(問答申論題) 共2頁第2頁

- (c) (1+2%) Suppose L is linear. (i) Use Ker(L) to describe a mathematic condition that is equivalent to L being one-to-one. (ii) Moreover, <u>show</u> the implication from the condition on Ker(L) to L being one-to-one.
- (d) (2+4%) Let L be linear with A as its matrix representation with respective to bases $E = [\mathbf{v}_1, \dots, \mathbf{v}_n]$ and $F = [\mathbf{w}_1, \dots, \mathbf{w}_m]$ for V and W, respectively. (i) Describe a mathematic condition about A that is equivalent to L being onto. (ii) Moreover, show the implication from that condition to L being onto.
- 4. (11%) Let $A \in \mathbb{C}^{n \times n}$.
- (a) (2%) Let λ∈C be an eigenvalue of A with corresponding eigenvector x. <u>Derive</u> in details the equation for solving λ. (要求推導出公式、而非背寫出公式卻沒有任何数學的說明)
- (b) (2+2%) (i) Let μ be an eigenvalue of matrix A. What is the mathematic notation for describing the number of linearly independent eigenvectors associated with μ ? (ii) Let $\{\mu_1, \dots, \mu_k\}$ be the set of all distinct eigenvalues of matrix A. Use the corresponding notation as in (i) to describe the condition for A being a diagonalizable matrix.
- (c) (5%) Suppose A = B + iC is a Hermitian matrix and let $\Omega = \begin{bmatrix} B & C \\ -C & B \end{bmatrix} \in \mathbb{R}^{2n \times 2n}$. Show that any eigenvalue λ of Ω is also an eigenvalue of A.

以下第 5 題到第 6 題中之所有的提問,需要寫出推導過程或詳細說明理由,答案正確但沒有推導過程或說明不正確,將酌扣分數或不給分。

5. (20%) Consider the following set of differential equations

$$\ddot{x}_1(t) = -2x_1(t) + 2x_2(t)$$

$$\ddot{x}_2(t) = 2x_1(t) + 5x_2(t) + u(t)$$

- (a) (15%) Let $u(t) \equiv 0$ and the initial conditions be $x_1(0) = x_2(0) = 1$, $\dot{x}_1(0) = \dot{x}_2(0) = 0$. Find the solutions of the differential equations.
- (b) (5%) Let initial conditions be $x_1(0) = x_2(0) = \dot{x}_1(0) = \dot{x}_2(0) = 0$, and u(t) be the unit step function. Does the solutions of the differential equations converge to constant values as time approaches infinity? Justify your answers.
- 6. (30%) Consider the following set of differential equations

$$\dot{x}_1(t) = (1 - \sqrt{x_1(t)^2 + x_2(t)^2})x_1(t) - x_2(t)$$

$$\dot{x}_2(t) = (1 - \sqrt{x_1(t)^2 + x_2(t)^2})x_2(t) + x_1(t)$$

- (a) (10%) Express the differential equations using the polar coordinate; i.e. express the equations in terms of (r, θ) , where $x_1(t) = r(t) \cos(\theta(t))$ and $x_2(t) = r(t) \sin(\theta(t))$.
- (b) (10%) Solve the differential equations for any nonzero initial conditions (x_{10}, x_{20}) .
- (c) (10%) Draw the phase plane portraits for the solutions (x_1, x_2) of the following initial conditions: $(x_{10}, x_{20}) = (0, 0.5), (-1, 0), \text{ and } (1, -1).$

End of Examination