國立中山大學 107 學年度碩士暨碩士專班招生考試試題

科目名稱:高等微積分【應數系碩士班丙組】

※本科目依簡章規定「不可以」使用計算機(問答申論題)

題號:424004

共1頁第1頁

1. [10%] Find the Taylor series expansion for the function

$$f(x) = \frac{1}{1 + 2x^2}$$

about x = 0 and find the convergence of interval of the series.

2. [15%] Define $f: \mathbb{R}^2 \to \mathbb{R}$ as

$$f(x,y) = \frac{y^{5/2}}{x^2 + y^2}$$

for $(x, y) \neq (0, 0)$ and f(0, 0) = 0. Is f continuous at (0, 0)? Verify your assertion.

3. [15%] Let $\{a_n\}$ be a positive sequence with $\sum a_n$ divergent. Show that the series

$$\sum \frac{a_n}{1+a_n}$$

also diverges.

4. [15%] Let $\{f_n\}$ be a sequence of continuous functions defined on [0,1], and suppose that the limit $\lim_{n\to\infty} f_n(x) = f(x)$ exists for any $x \in [0,1]$.

(1)[7%] Is f continuous on [0, 1]? Verify your assertion.

(2)[8%] Is it true that

$$\lim_{n \to \infty} \int_0^1 f_n(x) \ dx = \int_0^1 f(x) \ dx?$$

Verify your assertion.

5. [15%] Show that the equation

$$x^2 + x + y + \sin(x^2 + y^2) = 0$$

determines a unique solution y as a function x near the point (0,0) and show that this unique solution is differentiable at 0. Find the derivative y'(0).

- 6. [15%] Show that for any continuous function $f:[0,1]\to[0,1]$, there exists a point $\xi\in[0,1]$ for which $f(\xi)=\xi$.
- 7. (1)[8%] Is the intersection

$$\bigcap_{k=1}^{n} V_k$$

of open sets V_1, \ldots, V_n in some metric space X open in X? Verify your assertion. (2)[7%] Is your assertion in (1) still true if the finite intersection is replaced with a countable intersection of open sets in X? Verify your assertion.