國立中山大學 107 學年度碩士暨碩士專班招生考試試題

科目名稱:機率與統計【應數系碩士班甲組】

※本科目依簡章規定「不可以」使用計算機(問答申論題)

題號:424006

共1頁第1頁

答題時,每題須寫下題號與詳細步驟。 請依題號順序作答,不會作答題目請寫下題號並留空白。

Notation:

i.i.d.: identically independently distributed; pdf: probability density function; MLE: maximum likelihood estimator; $exp(\theta)$ random variable means a random variable with exponential distribution with a parameter θ and its pdf is $f(x|\theta) = \frac{1}{\theta}e^{-\frac{x}{\theta}}, x > 0$. \bar{X} is the sample mean of X_1, \ldots, X_n . Bin(n, p) indicates the Binomial distribution with n independent Bernoulli trail and each trail has success rate p. Unif[a,b] represents the uniform distribution within [a,b].

- 1. (15%) The joint moment generating function for random variables U and V is defined as $M(s,t)=E(\exp(sU+tV))$. X and Y are independent random variables with common moment generating function $M(t)=\exp(5t^2)$. Let U=X+Y+3 and V=2X-2Y. What is the joint moment generating function for U and V?
- 2. (15%) Assume the distribution of N is Bin(m, p). Conditional on N = n, the distribution of Y is Bin(n, q). What is the unconditional distribution of Y?
- 3. (15%) Let X_1, \ldots, X_{2n} be iid Unif[0,3]. The order statistics are $X_{(1)} < X_{(2)} < \cdots < X_{(2n)}$ What is the expectation of $X_{(n)}$?
- 4. (15%) Let $Y_i \sim Bin(n_i, p_i), i = 1, ..., m$, be mutually independent. Please derive the likelihood ratio test with significance level α for the null hypothesis

$$H_0: p_1 = \ldots = p_m$$

against the alternative hypothesis that not all the p_i are equal. You have to specify the test statistic and the asymptotic rejection region.

- 5. (20%) X_1, \ldots, X_n are i.i.d $\exp(\theta)$. Please answer the following questions.
 - (a) (5%) Prove \bar{X} and $\frac{X_1}{\bar{X}}$ are independent.
 - (b) (15%) Use (a) to derive the UMVUE for the parameter $P(X_1 > t) = e^{-t/\theta}$.
- 6. (20%) X_1, \ldots, X_n are independent random variables with X_i being distributed with $N(\mu, w_i \sigma^2)$, where w_i are known constants and μ and σ^2 are unknown parameters).
 - (a) (10%) Please find the MLE for μ .
 - (b) (10%) Calculate and the mean squared errors of the MLE derived from (a) and \bar{X} for μ . Which one has smaller mean squared error (you have to prove your answer)?