編號: 167

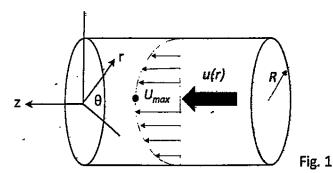
國立成功大學 107 學年度碩士班招生考試試題

系 所:生物醫學工程學系

考試科目: 生物力學

考試日期:0205,節次:2

第1頁,共2頁


※ 考生請注意:本試題不可使用計算機。 請於答案卷(卡)作答,於本試題紙上作答者,不予計分。

- 1. Explain the following terms
- (a) Free body diagram (2%)
- (b) Young's Modulus (2%)
- (c) Plane Stress and Plane Strain (4%)
- (d) Hagen-Poiseuille Flow (2%)
- (e) Bernoulli Equation (2%)
- 2. For **laminar** blood flow within a vessel (inelastic, cylindrical and straight as shown in Fig. 1), the wall shear stress can be estimated by the equation:

$$\tau_{wall} = \frac{4\mu\overline{U}}{R},$$

where R is the radius of the vessel, \overline{U} is the average velocity, and μ is the blood viscosity. Given that u=

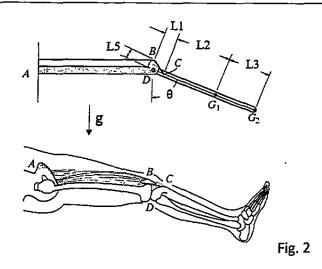
$$U_{max} \left[1 - \left(\frac{r}{R} \right)^2 \right]$$
 and $\tau = \mu \frac{\partial u}{\partial r}$, show how the wall shear stress is derived? (20%)

3. A skeletal diagram of the lower leg is shown in Fig. 2. The leg is lifted by the quadriceps muscle attached to the hip at A and to the patella bone at B. This bone slides freely over cartilage at the knee joint. The quadriceps is further extended and attached to the tibia at C. A schematic of the equivalent mechanical system is modeled in the upper figure. Determine the <u>tension at C</u> and the <u>resultant force at D</u> (pin support).

The lower leg has a mass of m_1 and a mass center at G_1 ; the foot has a mass of m_2 and a mass center at G_2 . (24%)

,		
	1	cos(A + B) = cos A cos B - sin A sin B
	. 2	cos(A - B) = cos A cos B + sin A sin B
	· 3	sin(A + B) = sin A cos B + cos A sin B
	4	sin(A - B) = sin A cos B - cos A sin B
	5	sin 2A = 2 sin A cos A

編號: 167


國立成功大學 107 學年度碩士班招生考試試題

系 所:生物醫學工程學系

考試科目:生物力學

考試日期:0205,節次:2

第2頁,共2頁

- 4. Slender bars with a cross-section of right triangle (Fig. 3) are used to construct a wheel chair. To ensure the bar can withstand the maximum loading, please <u>determine (a) the orientation θ_p of its principal axes and (b) the maximum and minimum moments of inertia by Mohr's Circle. (Hint: $I_x = \frac{a^4}{36}$, $I_y = \frac{a^4}{36}$, $I_{xy} = -\frac{a^4}{72}$) (24%)</u>
- 5. Vena Contracta (VC) is commonly used in clinic to evaluate the mitral/aortic regurgitation. Assume you are given a Doppler image showing the mitral valve in the phase of rapid ejection to evaluate the heart function (Fig. 4). The flowrate through the orifice is Q with a pressure difference $\Delta P = P1 P3$. d1, d2, d3 are known diameters at the entrance, orifice, and VC point, respectively. Determine the contraction coefficient $C_c = (d3/d2)^2$? (ρ_B is the density of blood) (20%)

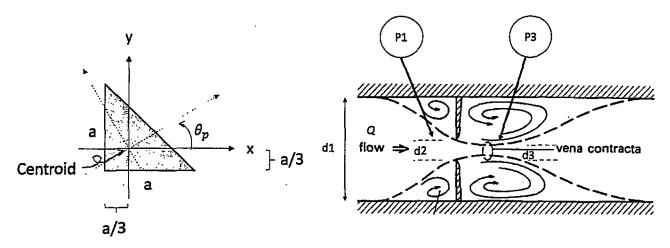


Fig. 3

Fig. 4