編號: 151

國立成功大學 107 學年度碩士班招生考試試題

系 所:環境工程學系

考試科目:微積分

考試日期:0205,節次:3

第1頁,共1頁

請於答案卷(卡)作答,於本試題紙上作答者,不予計分。 ※ 考生請注意:本試題不可使用計算機。

Answer the differentiation questions. (each 5 points, 20%)

(1)
$$g(x) = \sqrt{x} + e^x \ln x$$
, find $g''(x)$. (2) $x^2y - 4x = 5$, find $\frac{d^2y}{dx^2}$ implicitly in terms of x and y.

(3)
$$y = (1+x)^{1/x}$$
, find $\frac{dy}{dx}$ using logarithmic differentiation.

(4)
$$z = \frac{1}{2} \left(e^{x^2 + y^2} - e^{-x^2 - y^2} \right)$$
, find the total differential dz .

As shown on the figure, let R be the ratio of the area of triangle ABC (abbreviated as Δ ARC) to that of the shaded region formed by deleting Δ OAB from the circular sector subtended by angle θ . The segment AC is the height of Δ OAB. Please prove that the limit of R is 3 when θ approaches 0+. (10 points, 10%)

3. The oxygen deficit D(x) of a river is a function of flow distance x from a pollution source with waste loading rate of L_0 :

$$D = D_0 e^{-\frac{k_o}{U}x} + \frac{k_d L_0}{k_a - k_r} \left(e^{-\frac{k_r}{U}x} - e^{-\frac{k_o}{U}x} \right)$$

Where by assuming that there is only one pollution source discharged at x=0, and L_0 , D_0 , U, k_a , k_d and k_r are constants. Find the critical distance of x that maximizes the oxygen deficit. (10 points, 10%)

- Approximate $f(x) = x^2 e^{-x}$ at $x = \frac{1}{3}$ using the 4th Maclaurin polynomial for f(x). (10 points, 10%)
- Answer the integration questions. (each 5 points, 30%) 5.

$$(1) \int \frac{\ln \sqrt{x}}{x} dx$$

(2)
$$\int \frac{3x^3 + 4x}{(x^2 + 1)^2} dx$$
 (3) $\int \frac{x}{\sqrt{1 - x^4}} dx$

$$(3) \int \frac{x}{\sqrt{1-x^4}} dx$$

(4) Prove
$$\int_{a}^{b} f(x)f'(x)dx = \frac{1}{2}([f(b)]^{2} - [f(a)]^{2}).$$
 (5) $\int x^{2} \cos x dx$

$$(5) \int x^2 \cos x dx$$

(6)
$$\int_0^\infty \int_0^\infty \frac{1}{(1+x^2+y^2)^2} dx dy$$

- Find the value of a such that the area bounded by $y = e^{-x}$, the x-axis, x = -a, and x = a is $\frac{8}{3}$. (10 points, 10%) 6.
- 7. Sketch and evaluate the solid region whose volume is given by the following iterated integral. (10 points, 10%)

$$\int_0^{2\pi} \int_0^{\pi} \int_2^5 \rho^2 \sin\phi d\rho d\phi d\theta$$