國立成功大學107學年度碩士班招生考試試題

編號: 41

所:數學系應用數學

考試科目: 高等微積分

考試日期:0206,節次:2

第1頁,共2頁

※ 考生請注意:本試題不可使用計算機。 請於答案卷(卡)作答,於本試題紙上作答者,不予計分。

General Notations:

R: The set of real numbers.

 \mathbb{Z} : The set of integers.

Q: The set of rational numbers.

 $[a,b] := \{x \in \mathbb{R} \mid a \le x \le b\}.$

 $A \backslash B := \{ x \in A \mid x \notin B \}.$

1. (10 points) Compute the following double integral:

$$\int_0^{\frac{1}{2}} \int_{2y}^1 e^{-x^2} \ dx dy.$$

- 2. Given a metric space (X, d),
 - (a) (5 points) State the definition of a metric d on X.
 - (b) (5 points) Define open subsets of X with respect to d.
 - (c) (5 points) Define compact subsets of X with respect to d.
- 3. Given a metric space (X, d), determine whether each of the following statements is true or false. Prove the statement if it is true, and provide counterexample if it is false.
 - (a) (10 points) Any intersection of open subsets of X is open.
 - (b) (10 points) Any intersection of compact subsets of X is compact.
- 4. Given a sequence $\{a_n\}$ of real numbers,
 - (a) (5 points) State the definitions of $\limsup_{n} a_n$ and $\liminf_{n} a_n$.
 - (b) (5 points) Prove that if a_n converges to a, then

$$\liminf_{n} a_n = \limsup_{n} a_n = a.$$

5. Consider the function $f: \mathbb{R} \to \mathbb{R}$ defined by

$$f(x) = \begin{cases} x^2 \cos \frac{1}{x} & ; x \neq 0 \\ 0 & ; x = 0 \end{cases}$$

- (a) (10 points) Prove that f is differentiable on \mathbb{R} .
- (b) (5 points) Prove that f' is not continuous at x = 0.

编號:

國立成功大學107學年度碩士班招生考試試題

所:數學系應用數學

考試科目: 高等微積分

考試日期:0206,節次:2

第2頁,共2頁

※ 考生請注意:本試題不可使用計算機。 請於答案卷(卡)作答,於本試題紙上作答者,不予計分。

6. For $x \in \mathbb{R}$, define the function (x) to be the fractional part of x. That is,

$$(x) = x - [x],$$

where [x] is the greatest integer $\leq x$.

- (a) (5 points) Prove that (x) is continuous on $\mathbb{R}\setminus\mathbb{Z}$.
- (b) (5 points) Given $n \in \mathbb{Z}$, what is the set of discontinuity for (nx).
- (c) (10 points) Prove that the function

$$\sum_{n=1}^{\infty} \frac{(nx)}{n^3}$$

is continuous on irrational numbers $\mathbb{R}\setminus\mathbb{Q}$.

7. (10 points) Given a continuous function f on [a, b], prove that there exists a sequence of polynomials $\{P_n\}$ so that

$$\lim_{n\to\infty} \int_a^b |f - P_n|^2 dx = 0.$$

(Hint: You may use some famous theorem)