編號: 40

國立成功大學107學年度碩士班招生考試試題

系 所:數學系應用數學

考試科目: 線性代數

考試日期:0206,節次:1

第|頁,共|頁

※ 考生請注意:本試題不可使用計算機。 請於答案卷(卡)作答,於本試題紙上作答者,不予計分。

Remarks on notation. F is understood to be either \mathbb{R} or \mathbb{C} . $F^{m \times n}$ denotes the class of all $m \times n$ matrices with entries in F.

Show all your work to get full credit.

- 1. $\beta = \{(4, -2), (6, -2)\}$ and $\gamma = \{(1, 1), (1, -1)\}$ are two ordered bases of F^2 . Find the change of basis matrix from β to γ . (15 points)
- 2. Let $A = \begin{bmatrix} 4 & -3 \\ 2 & -1 \end{bmatrix}$. Derive the formula of A^n $(n \in \mathbb{N})$. (15 points)
- 3. The equation $13x^2 10xy + 13y^2 72 = 0$ determines an ellipse in the plane \mathbb{R}^2 . Find its area. (15 points)
- 4. Apply the Gram-Schmidt process to the vectors (1,0,1), (1,0,-1), (0,3,4), to obtain an orthonormal basis for \mathbb{R}^3 with the standard inner product. (16 points)
- 5. Let $A, B \in F^{n \times n}$. Prove that if I AB is invertible, then I BA is also invertible. (15 points)
- 6. Let $(V, \langle \cdot, \cdot \rangle)$ be a finite dimensional inner product space over F. For a subspace K of V, let K^{\perp} denote its orthogonal complement $\{v \in V \mid \langle v, w \rangle = 0 \ \forall w \in K\}$. Let K_1, K_2 be two subspaces of V. Prove the following formulas.
 - (a) $(K_1 + K_2)^{\perp} = K_1^{\perp} \cap K_2^{\perp}$. (12 points)
 - (b) $(K_1 \cap K_2)^{\perp} = K_1^{\perp} + K_2^{\perp}$. (12 points)