編號: 196

國立成功大學 107 學年度碩士班招生考試試題

系 所:電腦與通信工程研究所

考試科目:電磁數學 考試日期:0205,節次:3

第1頁,共2頁

※ 考生請注意:本試題不可使用計算機。 請於答案卷(卡)作答,於本試題紙上作答者,不予計分。

1. Consider the Bessel equation

$$x^2y'' + xy' + (x^2 - p^2)y = 0$$

- (a) (10%) Determine the solution y(x) that satisfies $y(\pi) = 0$ and $y'(\pi) = 1$ when p = 1/2. Express your answers in terms of elementary functions.
- (b) (10%) Determine the solution y(x) of above differential equation that satisfies $\lim_{x\to 0} y(x) = 0$ when p = 2. Is this solution unique? Explain.

[Hint] Given limiting behaviors

$$J_p(x) \simeq \frac{1}{2^p p!} x^p$$
 as $x \to 0$

$$Y_p(x) \simeq \frac{2^p(p-1)!}{\pi} x^{-p}$$
 as $x \to 0$

2. (a) (10%) Consider the ordinary differential equation

$$(x^2 - x)y'' - (x^2 + 1)y' - (x - 1)y = 0$$

Put this equation in the form $y'' + a_1(x)y' + a_2(x)y = 0$ and locate all its singular points. (Note: Singular points in this case are those at which $a_1(z)$ or $a_2(z)$ is not analytic.)

(b) (10%) Find the smallest positive integer m and n such that

$$(\sqrt{3}-i)^m = (1+i)^n$$

- (c) (10%) Determine where in the complex plane the function, $\frac{1}{e^{z-1}}$, is analytic?
- 3. (20%) Choose the true statement(s) from the following. (Need not to give reasons.)
 - (a) Let V be a vector space, and S_1 and S_2 be two subspaces of V. It is possible that S_1 and S_2 are disjoint, $S_1 \cap S_2 = \phi$, where ϕ denotes the empty set.
 - (b) Suppose that A and B are two $n \times n$ matrices. If A has an eigenvalue λ_a and B has an eigenvalue λ_b , then (A+B) has an eigenvalue $(\lambda_a + \lambda_b)$.
 - (c) Let T be a linear transformation (operator) on a vector space V. Then T^2 is also a linear transformation (operator) on V.
 - (d) For any matrix A, we have $rank(A^TA) = rank(AA^T)$

編號: 196

國立成功大學 107 學年度碩士班招生考試試題

系 所:電腦與通信工程研究所

考試科目:電磁數學 考試日期:0205,節次:3

第2頁,共2頁

※ 考生請注意:本試題不可使用計算機。 請於答案卷(卡)作答,於本試題紙上作答者,不予計分。

4. (10%) Suppose that both A and B are 3×3 matrices. The eigenvalues of A are 1, 2, and 3; while the eigenvalues of B are -2, 3, and -4. Find the determinants of AB and A(B+I), respectively.

- 5. Suppose that A and B are two $m \times n$ matrices and m < n.
 - (a) (10%) Is it possible that AB^T is an invertible matrix? (Give your reason.)
 - (b) (10%) Is it possible that A^TB is an invertible matrix? (Give your reason.) (We use M^T to denote the transpose of a matrix M.)