編號: 195

國立成功大學 107 學年度碩士班招生考試試題

系 所:電腦與通信工程研究所

考試科目:電磁學及電磁波

考試日期:0205,節次:2

第1頁,共2頁

※ 考生請注意:本試題可使用計算機。 請於答案卷(卡)作答,於本試題紙上作答者,不予計分。 (試卷 6 題共計 100 分)

For your reference: $\epsilon_0 = 10^{-9}/36\pi$ (F/m); $\mu_0 = 4\pi \times 10^{-7}$ (H/m); $\eta_0 = 120\pi$ (Ω)

Permittivity ε (= $\varepsilon_r \varepsilon_0$); Permeability μ (= $\mu_r \mu_0$); Conductivity σ

1. (a) Please give the Maxwell's equations in differential form. [10%]

(b) Assuming under the source-free conditions, given the electric field \vec{E} , prove that [10%]

$$\nabla^2\,\vec{E} = \mu\,\sigma \frac{\partial\,\vec{E}}{\partial\,t} \ .$$

2. As shown in Fig. A, the volume in Cylindrical coordinates between r=3 m and r=5 m contains a uniform charge density $\rho=100$ (C/m³). Use the Gauss's law to find the electric flux density \vec{D} in all regions. [10%]

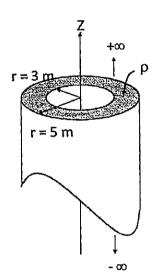
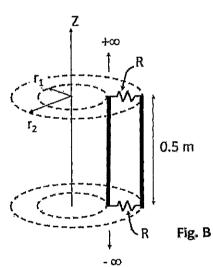



Fig. A

3. As shown in **Fig. B**, a rectangular conducting loop with resistance $R=0.1~\Omega$ turns around the z-axis at a frequency of 100 Hz. The vertical conductors with a length of 0.5 m locate at $r_1=0.03$ m and $r_2=0.05$ m, respectively. The magnetic flux density $\vec{B}(r)=\hat{a}_r\frac{0.075}{r}$ (Wb/m²). Find the magnitude of induced current in the loop. [10%]

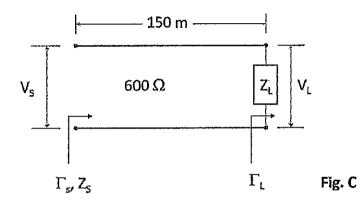
- 4. Consider an air-filled rectangular waveguide having dimensions of a = 2.286 cm and b=1.016 cm.
- (a) Supposed only the dominant mode should be transmitted. What is the range of frequency that can be used. [10%]
- (b) When the operation frequency is 15 GHz, which TE and TM modes can propagate in the waveguide? [10%]

(背面仍有題目,請翻頁繼續作答)

編號: 195

國立成功大學 107 學年度碩士班招生考試試題

系 所:電腦與通信工程研究所


考試科目:電磁學及電磁波

考試日期:0205,節次:2

第2頁,共2頁

5. A 600- Ω transmission line is 150 m long, as shown in Fig. C, operates at a frequency of 400 kHz with an attenuation constant α of 2.4×10⁻³ Np/m and a phase constant β of 0.0212 rad/m. This transmission line is terminated with a load of $Z_L = 300\sqrt{2} \angle 45^\circ$ Ω .

- (a) Find the length of line in wavelength, the reflection coefficient Γ_L at the load end, the reflection coefficient Γ_S at the source end, and the input impedance Z_S at the source end. [10%]
- (b) For a received voltage $V_L = 50 \angle 0^\circ \text{ V}$ at the load end, find the voltage V_S at the source end. [10%]

- 6. (a) Determine the magnitude of electric field intensity at a distance 2 km from an antenna having a directive gain of 10 dB and radiating a total power of 5 kW. [10%]
- (b) A Hertzian dipole of length L=2 m and radius a=2 mm. Find the radiation efficiency if the copper conductor has $\sigma_c = 58 \times 10^6$ S/m. [10%]