國立成功大學 107 學年度碩士班招生考試試題

編號: 184

所:電機工程學系

考試科目:電儀表學

第1頁,共2頁

考試日期:0205,節次:2

※ 考生請注意:本試題可使用計算機。 請於答案卷(卡)作答,於本試題紙上作答者,不予計分。

1. (20%) Fig. 1 shows the circuit of the analog-to-digital converter (ADC) in a stepper-type digital voltmeter, where the frequency of clock pulses is 1 MHz, the resolution of the digital-to-analog converter (DAC) is 10-bit, and the input voltage range of E_{In} is 0-5V. (a) Please calculate the fastest sampling rate when using this ADC. (10%) (b) For E_{In}=0, the output digital code is 0000000000 by using this ADC. Please calculate the corresponding value of E_{In} when the output digital code is 0100100100. (10%)

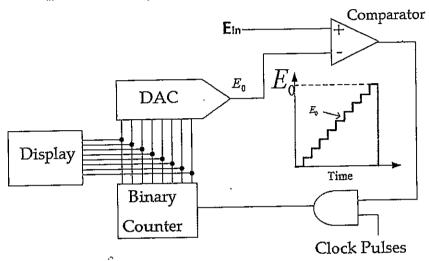
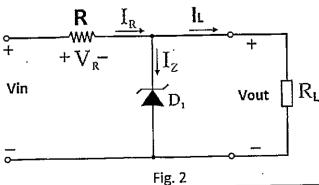



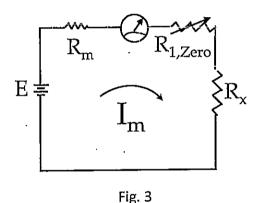
Fig. 1

- 2. (12%) In a decimal counting unit (DCU), the rolling effect may happen if the circuit is not appropriately designed. Please explain what the rolling effect is, and describe how to eliminate this phenomenon.
- 3. (18%) As shown in Fig. 2, a Zener diode is used to regulate the output voltage (Vout), where Vin is 8V, R is 50Ω , and the breakdown voltage V_{ZO} and dynamic impedance r_z (i.e., the equivalent resistance in the breakdown region) of the Zener diode is 5 V and 2 Ω , respectively. The desired output voltage (V_{O_goal}) of this circuit is 5V. (a) Please calculate the actual value of Vout when the equivalent load resistance (R_L) is 100Ω . (8%) (b) Please recalculate the actual value of Vout when R_L is $1 k\Omega$. (4%) (c) According to the results in (a) and (b), please calculate the load regulation of this circuit. (6%)

[Load regulation =
$$\frac{\Delta Vout}{V_{O_goal}} \times \frac{1}{\Delta I_L} \times 100\%$$
, Unit: %/A]

編號: 184

國立成功大學 107 學年度碩士班招生考試試題


系 所:電機工程學系

考試科目:電儀表學

第2頁,共2頁

考試日期:0205,節次:2

- 4. (10%) What value of a multiplier resistor will make a 0-to-100 μ A meter with an internal resistance of 1.5 k Ω read (a) 0 to 5V? (5%) (b) 0 to 20V? (5%)
- 5. (12%) Given $A = 6 \pm 0.2$, $B = 3 \pm 0.3$, $C = 1 \pm 10\%$, and $D = 3 \pm 5\%$. Please estimate the value of A*B / (C+D) with absolute errors in expression.
- 6. (16%) Given the meter used is accurate to ±2%. (a) **Prove** that the **accuracies** (i.e., errors of measured resistance) of a series-type ohmmeter (refer to the ohmmeter in Fig. 3) at x full-scale deflection (FSD) and (1- x) FSD are exactly the same (x ranges from 0%~100%). (Hint: you need to express the measured R_x error in function of x). (8%) (b) Determine the errors of unknown resistance R_x at 80% FSD. (8%)

7. (12%) Please refer to Fig. 4. Assume transmission line $Z_0 = 50 \Omega$; discontinuity occurs and is measured at t_0 =0; E_i = 2 V. For the circuit terminated with a series R-L (R=25 Ω ; L=300 mH) circuit, (a) draw the response of Time-Domain Reflectometer (TDR) measurement results. (4%) (b) Calculate the reflection coefficient at time t_0 =0. (4%) (c) Please evaluate the time (w.r.t. t_0) when the total received voltage (E_i + E_r) is 2.5 V. (4%)

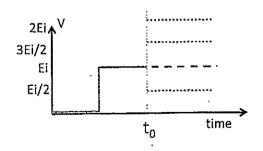


Fig. 4