考試科目近代物理 系所别 使用物混研究的 考試時間 2月3日(六)第二節

1. [45 points] Short answer questions

- (a) Two particles of the same mass m and moving at the same speed v=0.866c (c is the speed of light) collide head-on and combine to produce only a new particle of mass M. What is the mass of this new particle? (Note: At v=0.866c, $\sqrt{1-v^2/c^2}=0.50$).
- (b) Consider two monochromatic (single-wavelength) light sources (light bulbs) emitting light of respective wavelengths λ_1 and λ_2 , with $\lambda_2 > \lambda_1$. The two bulbs are otherwise identical and emit light with exactly the same intensity (in W/m^2). A detector placed a distance d from bulb 1 (emitting at wavelength λ_1) records N photons per second. When the same detector is placed at the same distance d from bulb 2 (emitting at wavelength λ_2), is the number of photons per second recorded by the detector greater than N, smaller than N, or equal to N? EXPLAIN YOUR ANSWER.
- (c) Some stars are observed to be reddish, and some are blue. Which stars have the higher surface temperature? Explain.
- (d) An electron is trapped in a one-dimensional region of space between two rigid walls at x = 0 and x = L. In the first excited state, where would you expect that the electron is most likely found?
- (e) A particle in an infinite square well has as its initial wave function an equal mixture of he first three orthonormal stationary states:

$$\Psi(x,0) = A[\varphi_1(x) + \varphi_2(x) + \varphi_3(x)]$$

What is the value of the normalization constant A?

- (f) (i) Write out the electronic configuration for oxygen (Z = 8). (ii) Write out the values for the set of quantum numbers n, ℓ, m_{ℓ} , and m_s for each of the electrons in oxygen.
- [9] (g) Consider a collection of 4 identical atoms obeying the rules of quantum mechanics. The atoms can occupy a set of energy levels at $2 \,\mathrm{eV}$, $4 \,\mathrm{eV}$, $6 \,\mathrm{eV}$ and $8 \,\mathrm{eV}$. At a temperature of $T = 0 \,\mathrm{K}$, what would be the average energy of these 4 atoms if they behaved like:
 - (i) spin-1 particles,
 - (ii) spin-1/2 particles,
 - (iii) spin-1/2 particles in a strong magnetic field in which all the electron spins point in the same direction.

Give your answers in units of eV.

(h) A certain insulator has an energy gap of 6.0 eV. Is this insulator opaque or transparent to visible light. EXPLAIN YOUR ANSWER.

考試科目近代物况 系所别 使用物现研究的 考試時間 2月3日(方)第二節

2. [15 points] Relativity

An observer in frame S sees lightning simultaneously strike two points 100 m apart. The first strike occurs at $x_1 = y_1 = z_1 = 0$ at time $t_1 = 0$ and the second at $x_2 = 100$ m, $y_2 = z_2 = 0$ at time $t_2 = 0$.

- (a) What are the coordinates of these two events in a frame S' moving in the standard configuration at 0.70c relative to S?
- (b) How far apart are the events in S'?
- (c) Are the events simultaneous in S'? If not, what is the difference in time between the events, and which event occurs first?

3. [20 points] The quantum oscillator

The wavefunction

$$\psi(x) = Cxe^{-\alpha x^2}$$

describes a state of the quantum oscillator in a potential energy $U(x) = m\omega^2 x^2/2$.

- (a) Using Schrödinger's equation, obtain an expression for α in terms of the oscillator mass m and the frequency ω .
- (b) What is the energy of this state?

4. [20 points] Expectation value

An electron is described by the wavefunction

$$\psi(x) = \begin{cases} 0 & \text{for } x < 0 \\ Ce^{-x} (1 - e^{-x}) & \text{for } x > 0 \end{cases}$$

where C is a constant.

- (a) Find the value of C that normalizes ψ .
- (b) Where is the electron most likely to be found; that is, for what value of x is the probability for finding the electron largest?
- (c) Calculate the average position $\langle x \rangle$ for this electron.