大同大學 100 學年度研究所碩士班入學考試試題

考試項目:電子學 所別:光電工程研究所 第 1/2 頁

註:本次考試 不可以參考自己的書籍及筆記;不可以使用字典; 不可以使用計算器。

1. Fig.1 shows a CMOS inverter gate and its transfer curve.

 $|V_{TN}| = |V_{TP}| = 1 \text{ V}, K_n = 4K_p = 100 \ \mu\text{A/V}^2.$

- (a) Find V_H , V_1 , V_2 , V_T .
- (b) A 100 KHz clock signal (High level 5 V, Low level 0 V) is applied to the input of CMOS inverter gate, and the output load of the gate is a 10 pF capacitor. Calculate the average power consumption of the gate.
- (c) Sketch the circuit diagram of a CMOS NAND gate with 2 input terminals.

- 2. The circuit is shown in Fig.2, assume that the input impedance of the FET amplifier is very large and the FET is adequately characterized by an ideal voltage-controlled current-source model.
 - Find the frequency of oscillation ω_o and the minimum gain $(g_m R_d)$ required for the circuit to oscillate.

大同大學 100 學年度研究所碩士班入學考試試題 〈獎顏》〉 考試項目:電子學 所別:光電工程研究所 第 2/2 頁

考試項目:電子學 所別:光電工程研究所 第 2/2 頁 註:本次考試 不可以參考自己的書籍及筆記;不可以使用字典; 不可以使用計算器。

- 3. The diode is "turned on" and "turned off" at t = 0 and $t = t_1$, as shown in Fig.3. What is the variation of current i as function of time?
- 4. A bipolar transistor is used in the circuit of Fig.4. Given that $V_{CC}=22.5$ V, $R_C=5.6$ k Ω , $R_e=1$ k Ω , $R_2=10$ k Ω and $R_I=90$ k Ω , $\beta=50$, $C_b=1$ μF . Find I_C and I_B .

5. For the comparator in Fig.5, determine the maximum value of R_f that will ensure correct switching (no chatter) of the zero crossing point.

Assume that $V_Z = 10 \text{ V}$, $V_D = 0.7 \text{ V}$, $V_S = (5 \text{ sim} \omega_o t + 0.05 \text{ sim} 100 \omega_o t) V$.

Fig.5