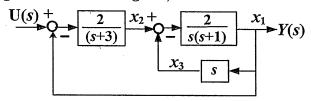
大同大學 100 學年度研究所碩士班入學考試試題

考試科目:自動控制


所別:機械工程研究所

共2頁

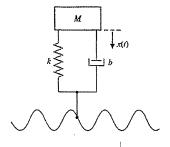
註:本次考試 <u>不可以</u>参考自己的書籍及筆記; <u>不可以</u>使用字典; <u>可以</u>使用計算器。 (15%)(1) For a state variable equation

$$\dot{\mathbf{x}} = \begin{bmatrix} -3 & -2 & -1 \\ 1 & 0 & -1 \\ 0 & 0 & -4 \end{bmatrix} \mathbf{x} + \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix} u(t)$$
$$y = \begin{bmatrix} 1 & 2 & 3 \end{bmatrix} \mathbf{x}$$

- (a) Find the transition matrix $\phi(t)$.
- (b) If $\mathbf{x}(0) = [0 \ 0 \ 0]^T$, $u(t) = \delta(t)$, Find $\mathbf{y}(t)$
- (c) Determine the transfer function Y(s)/U(s).
- (10%)(2) For the block diagram shown in Fig. 2,

Using the defined state variables x_1 , x_2 , and x_3 , find its state space equation $\dot{\mathbf{x}} = \mathbf{A}\mathbf{x} + \mathbf{B}\mathbf{u}$; $\mathbf{y} = \mathbf{C}\mathbf{x}$

(10%)(3) For the state-variable equation


$$\dot{\mathbf{x}} = \begin{bmatrix} 3 & 1 & 0 & 0 & 0 \\ 0 & 3 & 1 & 0 & 0 \\ 0 & 0 & 3 & 0 & 0 \\ 0 & 0 & 0 & 5 & 0 \\ 0 & 0 & 0 & 0 & 1 \end{bmatrix} \mathbf{x} + \begin{bmatrix} 0 \\ 0 \\ 1 \\ 1 \\ 1 \end{bmatrix} u$$

$$\mathbf{y} = \begin{bmatrix} 1 & -2 & 2 & 3 & 4 \end{bmatrix} \mathbf{x}$$

-73-17-147-8

Find the transfer function Y(s)/U(s)

(15%)(4) As an automobile moves along the road, the vertical displacements at the tires act as the motion excitation to the automobile suspension system. The figure shown is a schematic diagram of a simplified automobile suspension system, for which we assume the input is sinusoidal. Determine the transfer function X(s)/R(s), and sketch the Bode diagram when M=1 kg, b = 4 N s/m, and k = 18 N/m.

- (15%)(5) (a) Find a suitable contour Γ_s in the s-plane that can be used to determine whether all roots of the characteristic equation have damping ratios greater than ζ_1 ,
 - (b) Find a suitable contour Γ_s in the s-plane that can be used to determine whether all the roots of the characteristic equation have real parts less than s = $-\sigma_1$.
 - (c) Using the contour of part (b) and Cauchy's theorem, determine whether the following characteristic equation has roots with real parts less than s=-1: $q(s) = s^3 + 11s^2 + 56s + 96$.

- (20%)(6) Draw a typical unit step response of a linear system. Show the following properties on the respose curve and describe the definitions: (1)Maximum overshoot; (2)Delay time; (3)Rise time; (4)Settling time
- (15%)(7) How to decide the stability of a linear system? (Please give two of the methods at least.)