東吳大學 106 學年度碩士班研究生招生考試試題

第1頁,共1頁

系級	數學系碩士班 A 組(數學)	考試時間	100 分鐘
科目	線性代數	本科總分	100 分

1. (20%)

(a) Let
$$M = \begin{bmatrix} a & b & c & d \\ d & a & b & c \\ c & d & a & b \\ b & c & d & a \end{bmatrix}$$
, where $a+b+c+d=0$. Find $det(M)$.
$$\begin{bmatrix} x & 0 & 0 & 0 \end{bmatrix}$$

(b) Let
$$N = \begin{bmatrix} x & 0 & 0 & 0 \\ 1 & y & 0 & 0 \\ 0 & 1 & z & 0 \\ 0 & 0 & 1 & w \end{bmatrix}$$
, where $xyzw \neq 0$. Find $det(N)$.

(c) Are the matrices M and N invertible? If it is invertible, find it's inverse matrix.

2. (20%)

- (a) Let W_1 and W_2 are subspace of finite dimensional vector space V. Show that $W_1 \cap W_2$ is also subspace of V.
 - (b) Is $W_1 \cup W_2$ subspace of V? If true, prove it; if false, given a counterexample.
 - (c) Given the smallest subspace of V containing $W_1 \cup W_2$.

3(20%)

- (a) Show that the set $\{(0,1,1),(1,0,1),(1,1,0)\}$ is basis for vector space \mathbb{R}^3
- (b) Let $T: \mathbb{R}^3 \to \mathbb{R}^4$ be linear transformation with T(0, 1, 1) = (2, 1, 0, 1), T(1, 0, 1) = (2, 1, 1, 0) and T(1, 1, 0) = (2, 0, 1, 1), find T(x, y, z).
- (c) Find the kernel of T, given the nullity of T and rank of T.
- 4 (20%) Apply the Gram-Schmidt process to transform the basis vectors u_1 = (0,1,1), u_2 = (1,0,1), u_3 = (1,1,0) into an orthogonal basis $\{v_1, v_2, v_3\}$.

5 (20%) Let
$$A = \begin{bmatrix} 3 & 2 \\ 1 & 4 \end{bmatrix}$$

- (a) Find the eigenvalues and eigenvectors of A.
- (b) Find an invertible matrix C and a diagonal matrix D such that $D = C^{-1} A C$.
- (c) Find r, s, t, w such that $A^{100} = \begin{bmatrix} r & s \\ t & w \end{bmatrix}$