東吳大學 106 學年度碩士班研究生招生考試試題

第1頁,共1頁

系級	數學系碩士班 A 組(數學)	考試 時間	100 分鐘
科目	高等微積分	本科總分	100 分

1. 20% Suppose f(x) is a continuous function on [a, b], f(a) < 0 < f(b), and f(x) has only one zero x_0 in (a, b).

If we use bisection method to find x_0 , that is, if $f(\frac{a+b}{2}) < 0$, define $a_1 = \frac{a+b}{2}$, $b_1 = b$; if

 $f(\frac{a+b}{2}) > 0$, define $a_1 = a$, $b_1 = \frac{a+b}{2}$, then repeat this process inductively to get a_n , b_n . Suppose a_n , b_n are

well defined for each positive integer n.

- (i) Prove that both $\{a_n\}$ and $\{b_n\}$ converge as $n \to \infty$
- (ii) Use $\lim_{n\to\infty} a_n$ and $\lim_{n\to\infty} b_n$ to represent x_0 .
- (iii) If we use a_n to approximate x_0 , estimate the error.
- 2. 10% Suppose f(x, y) is continuous in \Re^2 , f(0,0) > 0, f(1, 1) < 0, will there exist a point (x_0, y_0) such that $f(x_0, y_0) = 0$? Why?

3. 10%
$$\int_{0}^{\infty} e^{-x^2} dx = ?$$

- 4. 20% Suppose f(x) is differentiable and $c \neq 0$ is a constant, let u(x, t) = f(x ct).
- (i) Show that u(x, t) satisfies $\frac{\partial u}{\partial t} + c \frac{\partial u}{\partial x} = 0$.
- (ii) Show that ∇u (i.e. gradient of u) is orthogonal to (c, 1) everywhere.
- (iii) What are the level curves of u(x, t)? Moreover, use the result in (ii) to confirm your answer.
- 5. 20% (i) What is the domain of the function $f(x) = \sum_{n=0}^{\infty} x^n$. (You have to give some reason of your answer)
- (ii) What is the domain of the function f'(x)? (You have to give some reason of your answer)
- 6. 20% Find the extreme values of $f(x, y) = x x^2 y^3$ on Ω , where $\Omega = \{(x, y) | -1 \le x \le 1, -1 \le y \le 1\}$.