中原大學 100 學年度 碩士班 入學考試

3月19日10:30~12:00

電子工程學系系統組

誠實是我們珍視的美德, 我們喜愛「拒絕作弊,堅守正直」的你!

科目: 工程數學(範圍:線性代數、機率)

(共2頁第1頁)

□可使用計算機,惟僅限不具可程式及多重記憶者

■不可使用計算機

1. (10%) Row reduce the following matrix to reduced echelon form, and list the pivot columns.

$$\begin{bmatrix}
1 & 4 & 7 & 10 \\
2 & 5 & 8 & 11 \\
3 & 6 & 9 & 12
\end{bmatrix}$$

2. (10%) Find the general solution of the system whose augmented matrix is given below.

$$\begin{bmatrix} 2 & 4 & 3 \\ -6 & 12 & 9 \\ 4 & -8 & 6 \end{bmatrix}$$

3. (10%) For $\mathbf{A} = \begin{bmatrix} 1 & 0 \\ -2 & 4 \end{bmatrix}$, define $T : R^2 \to R^2$ by $T(\mathbf{x}) = \mathbf{A}\mathbf{x}$. Find the images under T of $\mathbf{u} = \begin{bmatrix} 1 \\ 4 \end{bmatrix}$, $\mathbf{v} = \begin{bmatrix} 2 \\ 3 \end{bmatrix}$, and $\mathbf{u} + \mathbf{v} = \begin{bmatrix} 3 \\ 7 \end{bmatrix}$.

4. (10%) Let
$$\mathbf{A} = \begin{bmatrix} 1 & 3 \\ 2 & 5 \end{bmatrix}$$
, $\mathbf{b}_1 = \begin{bmatrix} 3 \\ 5 \end{bmatrix}$, $\mathbf{b}_2 = \begin{bmatrix} -1 \\ 2 \end{bmatrix}$, $\mathbf{b}_3 = \begin{bmatrix} 2 \\ -3 \end{bmatrix}$, $\mathbf{b}_4 = \begin{bmatrix} 2 \\ 7 \end{bmatrix}$. Find \mathbf{A}^{-1} , and use it to solve the four equations $\mathbf{A}\mathbf{x} = \mathbf{b}_1$, $\mathbf{A}\mathbf{x} = \mathbf{b}_2$, $\mathbf{A}\mathbf{x} = \mathbf{b}_3$, $\mathbf{A}\mathbf{x} = \mathbf{b}_4$.

5. (10%) Let the matrix $\mathbf{A} = \begin{bmatrix} 2 & 3 \\ -4 & -5 \end{bmatrix}$. Please find the eigenvalues and the corresponding eigenvectors of \mathbf{A} .

- 6. Let *A* and *B* be two events associated with an experiment. Suppose that P(A)=0.4 while $P(A \cup B)=0.7$. Let P(B)=p.
 - (a) (5%) For what choice of p are A and B mutually exclusive?
 - (b) (5%) For what choice of p are A and B independent?

中原大學 100 學年度 碩士班 入學考試

3月19日10:30~12:00

電子工程學系系統組

誠實是我們珍視的美德, 我們喜愛「拒絕作弊,堅守正直」的你!

(共2頁第2頁)

科目: 工程數學(範圍:線性代數、機率)__

□可使用計算機,惟僅限不具可程式及多重記憶者

不可使用計算機

7. (10%) Let $G(X) = a \sin(\omega t + X)$ where a, ω and t are constants and X is a random variable. If X has the probability density function (pdf)

$$f_X(x) = \begin{cases} \frac{1}{2\pi} & 0 \le x \le 2\pi \\ 0 & otherwise \end{cases}$$

find the mean E[G(X)] and variance Var[G(X)]. (Note: $\cos^2 \phi = \frac{1 + \cos 2\phi}{2}$)

8. Let $X_1, X_2, ..., X_n$ be a sample of values from a Gaussian (normal) population having mean μ and variance σ^2 . The sample mean is defined by $\overline{X} = \frac{1}{n} \sum_{i=1}^n X_i$, and the sample variance is defined

by
$$S^2 = \frac{\sum_{i=1}^{n} (X_i - \overline{X})^2}{n-1}$$
.

- (a) (10%) Show that the moment generating function ($\phi(t) = E[e^{tX}]$) of a Gaussian random variable X with mean μ and variance σ^2 is given by $\phi(t) = \exp\left\{\mu t + \frac{\sigma^2 t^2}{2}\right\}$.
- (b) (10%) Show that \overline{X} is a Gaussian random variable with mean μ and variance $\frac{\sigma^2}{n}$. (Hint: use the result of (a))
- (c) (10%) Find $E[S^2]$.