題號: 95

國立臺灣大學101學年度碩士班招生考試試題

科目:應用數學(B)

節次: 2

題號: 95 / 頁之第 / 頁

共

1 (25 points)

- (a) (10 points) Write down the Taylor expansions of e^x and e^{-x} . Draw the schematic diagrams of e^x and e^{-x} . What are the linear and nonlinear regimes of the e^x and e^{-x} .
- (b) (10 points) Why is e^{-1} scale used in the science? Why is not e^{-2} or e^{-3} used? What is the e^{-1} scale for the functions of e^{-k^3t} and $e^{-x^2/n}$?
- (c) (5 points) Draw a graph for $f(t) = te^{-t}$ ($t \ge 0$) and explain. What is the maximum of the function and the corresponding t.
- 2 (15 points) Find the eigenvalues and eigenvectors (normalized) of the following matrix A and B.
- (a) (5 points)

$$A = \begin{pmatrix} 0.8 & 0.6 \\ 0.2 & 0.4 \end{pmatrix}$$

(b) (5 points)

$$B = \begin{pmatrix} -1 & 1 \\ 1 & -1 \end{pmatrix}$$

(c) (5 points) What are the Sturm-Liouville properties of eigenvectors and eigenvalues for the Hermitian (symmetric) and skew-Hermitian (anti-symmetric) matrices.

3 (30 points) Solve the following first order ordinary differential equations with y_0 as the initial condition.

- (a) (10 points) $dy/dt = -\alpha y$,
- (b) (10 points) dy/dt = 1 y
- (c) (10 points) $dy/dt = y y^2$.

4 (10 points) <mark>偵探科</mark>南對命案死者死亡時間的推理。科南在命案發生短時間內到達現場,此時死者溫度仍比室溫爲高,科<mark>南利</mark>用

$$\frac{d\triangle T}{dt} = -\alpha\triangle T$$

方程式以及其解

$$\Delta T(t) = \Delta T(t_0) e^{\alpha(t-t_0)}$$

協助推理死亡時間。 $\triangle T = T - T_{room}$,死者溫度和室溫之差。 t_0 是死亡時間(科南想要知道的答案), $\triangle T(t_0)$ 爲死者死亡刹那的身體溫度 和室溫的差距,是已知數。科南需要量幾次死者溫度,以及如何計算才可以知道死亡時間?

5 (20 points) Consider the one dimensional wave equation

$$\frac{\partial^2 y}{\partial t^2} = c^2 \frac{\partial^2 y}{\partial x^2},$$

with boundary condition $y(0,t) = y(\pi,t) = 0$, and initial conditions y(x,0) = f(x) and $y_t(x,0) = g(x)$. Solve the equation with the separation variables technique.

Hint: The Fourier sine series of an odd function of period 2π (and n integers) is

$$f(x) = \sum_{n=1}^{\infty} b_n \sin nx,$$

with coefficients

$$b_n = \frac{2}{\pi} \int_0^{\pi} f(x) \sin nx dx.$$