中原大學100學年度 碩士班 入學考試

3月19日10:30~12:00 生物科技學系

誠實是我們珍視的美德, 我們喜愛「拒絕作弊,堅守正直」的你! (共4頁第1頁)

科目: 生物化學

一可使用計算機,惟僅限不具可程式及多重記憶者

不可使用計算機

1. About Proteins: basic concepts

- A. Catalysis is a characteristic of life. Most of enzymes in cells are proteins. Which type of macromolecules other than proteins can also work like an enzyme? (1 points)
- B. Proteins can be synthesized in the cytosol or endoplasmic reticulum (ER). Which is the organelle that conducts proteins synthesis? (1 points)
- C. The process that do not change the primary structure of proteins but can cause the lost of function of proteins is called? (1 points)
- D. What is the technique that can use the charge of proteins to separate each other and can determine the purity of a protein? (1 points)
- E. A nonapeptide was determined to have the following amino acid composition: (Arg)2, (Gly)2, (Phe)2, Glu, Leu, Met. The native peptide was incubated with 1-fluoro-2,4-dinitrobenzene (FDNB) and then hydrolyzed; 2, 4-dinitrophenylglutamate was identified by HPLC. When the native peptide was exposed to cyanogen bromide (CNBr cleavage point: Met), an octapeptide and free glycine were recovered. Incubation of the native peptide with trypsin (cleavage point: Lys or Arg) gave a pentapeptide, a tripeptide, and free Arg. 2,4-Dinitrophenyl-glutamate was recovered from the pentapeptide, and 2,4-dinitrophenylphenylalanine was recovered from the tripeptide. Digestion with the enzyme pepsin (cleavage point: Phe) produced a dipeptide, a tripeptide, and a tetrapeptide. The tetrapeptide was composed of (Arg) 2, Phe, and Gly. Please derive the native sequence and explain your rationales. (5 points)

2. About Proteins: Medicine and Applications

- A. Find the Match: Please match the diseases list in the left with the causing misfolding proteins list in the right (5 points)
 - (a) Alzheimer disease
 (b) Cystic fibrosis
 (c) Huntington's disease
 (d) Parkinson's disease
 (e) BSE and CJD
 (f) huntingtin
 (huntingtin
 (huntingtin<
- B. Please describe the difference between monoclonal antibody and polyclonal antibodies. (2 points)
- C. Please indicate the major difference between the ELISA and Western blot assay for protein detection. And, is it possible that a protein can be detected with Western blot but not be detected by ELISA with the same antibodies? Please give a brief explanation for your answer. (3 points)

中原大學100學年度 碩士班 入學考試

3月19日10:30~12:00 生物科技學系 科目:<u>生物化學</u> 誠實是我們珍視的美德, 我們喜愛「拒絕作弊,堅守正直」的你! (共 4 頁 第 2 頁)

□可使用計算機,惟僅限不具可程式及多重記憶者 ■不可使用計算機

3. Carbohydrates can act as information molecules

- A. Please indicate one way in which the body marks "old" proteins for destruction and replacement. You should give your answer about the working mechanism. (2 points)
- B. Why the gastric ulcers people of blood type O are several folds higher than in those of type A or B? (2 points)
- C. What is lipopolysaccharide ? Please also indicate which bacteria type will carry it and which syndrome is caused by it? (2 points)
- D. Can you give an explanation about the difference on carbohydrates between **glycoproteins** and **proteoglycans** ? (2 points)
- E. What is the difference between the N-linked and O-linked glycoproteins? (2 points)

4. lipids, membrane and signal transduction

- A. Please design an experiment that can distinguish the increasing of cytosolic Ca^{2+} concentrations of cells is come **from cytosol or extracellular** Ca^{2+} sources? (2 points)
- B. Phospholipase C can activate the protein kinase C by increasing the cytosolic Ca^{2+} and to response the action of hormone. Please indicate the signal transduction process: from Phospholipase C to protein kinase C by Ca^{2+} . (3 points)
- C. Match the compounds on the left with the important roles they play listed on the right. (Answers are used only once.) (2 points)
 - (a) prostaglandins (1) blood clotting
 - (b) sphingolipids (2) necessary for sight
 - (c) thromboxanes (3) mediates pain and inflammation
 - (d) vitamin A (4) important component of myelin membranes
- D. Please design an experiment that can demonstrate the membrane fluid mosaic model. (3 points)
- **5. Translation.** Please compare and contrast the initiation stage of translation between prokaryotes and eukaryotes. (10 points)
- **6. Gene expression regulation.** Using the following metabolic pathway to answer the questions that follow it. (8 points)

Substrate A $\xrightarrow{\text{enzyme } a}$ Intermediate B $\xrightarrow{\text{enzyme } b}$ End-product C

3月19日10:30~12:00 生物科技學系 誠實是我們珍視的美德, 我們喜愛「拒絕作弊,堅守正直」的	尔!
科目: 生物化學 (共4頁第3頁)	
□可使用計算機,惟僅限不具可程式及多重記憶者 ■不可使用計算機	

If enzyme *a* is inducible and is not being synthesized at present, a (1)_____ protein must be bound tightly to the (2) ______site. When the inducer is present, it will bind to the (3)______ so that (4) _____can occur.

7. Genetic code. The following is a code for a strand of DNA. (12 points)

DNA	3'	А	Т	А	Т				Т	Т	Т									
		1	2	3	4	5	6	7	8	9	10	11	12	13	14 3	15	16	17	18	19
mRNA												С	G	U				U	G	А
tRNA															U (G	G			
Amino acid						ſ	Me	t	_			_		_						

ATAT= promoter sequence

- A. Using the genetic code provided in the following, fill in the blanks to complete the segment of DNA shown.
- B. Fill in the blanks to complete the segment of amino acids coded for by this strand of DNA.
- C. Write the code for the complementary strand of DNA completed in part (A).
- D. What would be the effect if C was substituted for T at base 10?
- E. What would be the effect if C was inserted between base 9 and 10?
- F. How would UV radiation affect this strand of DNA?

		U		С		A		G		
First letter of codon (5' end)	U	UUU UUC	Phe Phe	$_{\rm UCC}^{\rm UCU}$	Ser Ser	UAU UAC	Tyr Tyr	UG U UG C	Cys Cys	
		UUA UUG	Leu Leu	$\begin{array}{c} \mathrm{UC}\mathbf{A} \\ \mathrm{UC}\mathbf{G} \end{array}$	Ser Ser	UAA UAG	Stop Stop	UGA UGG	Stop Trp	
	с	$_{\rm CUU}^{\rm CUU}$	Leu Leu	$\overset{\mathrm{CCU}}{_{\mathrm{CCC}}}$	Pro Pro	CAU CAC	His His	CG U CG C	Arg Arg	
		CUA CUG	Leu Leu	$\begin{array}{c} \mathrm{CCA}\\ \mathrm{CCG} \end{array}$	Pro Pro	$\begin{array}{c} {\rm CAA} \\ {\rm CAG} \end{array}$	Gln Gln	CG A CG G	Arg Arg	
	А	AUU AUC	Ile Ile	$egin{array}{c} AC \mathbf{U} \\ AC \mathbf{C} \end{array}$	Thr Thr	AAU AAC	Asn Asn	AGU AGC	Ser Ser	
		AUA AUG	Ile Met	ACA ACG	Thr Thr	AAA AAG	Lys Lys	AG A AG G	Arg Arg	
	G	GU U GU C	Val Val	$_{\rm GC{\bf U}}^{\rm GC{\bf U}}$	Ala Ala	GAU GAC	Asp Asp	GG U GG C	Gly Gly	
		GU A GU G	Val Val	GCA GC G	Ala Ala	GA A GA G	Glu Glu	GG A GG G	Gly Gly	

Second letter of codon

中原大學100學年度 碩士班 入學考試

3月19日10:30~12:00 生物科技學系
科目: 生物化學 _____
□可使用計算機,惟僅限不具可程式及多重記憶者

誠實是我們珍視的美德, 我們喜愛「拒絕作弊,堅守正直」的你! (共4頁第4頁)

▼可使用計算機

8. About Citric Acid Cycle

- A. Individuals with a thiamine-deficient diet have relatively high levels of pyruvate in their blood. Please explain this in the aspect of biochemistry. (2 points)
- B. What electron acceptors play a role in the citric acid cycle? (4 points)
- C. Would you expect the citric acid cycle to be more or less active when a cell has a high ATP/ADP ratio and a high NADH/NAD⁺ ratio? Give the reason for your answer. (4 points)
- **9. About Carbohydrate Metabolism.** What are four possible metabolic fates of glucose-6-phosphate? (8 points)

10. About Lipid Metabolism.

- A. In β -oxidation, how many carbons at a time are cleaved from acyl-CoA, starting at the carboxyl end. (2 points)
- **B.** Under what conditions are ketone bodies produced? (4 points)
- **C.** Why are linoleate and linolenate considered essential fatty acids? What step in production of polyunsaturated fatty acids are mammals unable to perform? (4 points)
- **D.** Which enzyme does the statins lower plasma cholesterol level by? (2 points)