中原大學 100 學年度 碩士班 入學考試

3月19日15:30~17:00

應用數學系資訊科學組

誠實是我們珍視的美德, 我們喜愛「拒絕作弊,堅守正直」的你! (共2頁第1頁)

科目: 離散數學

□可使用計算機,惟僅限不具可程式及多重記憶者

■不可使用計算機

三主 //	ーケケナ人 ケケ 😓	4
丽们	F答於答案	吞

作合於合条卷
• True or false. $(2\% \times 10 = 20\%)$
$() 1. A \cap (B \cup C) = (A \cap B) \cup (A \cap C).$
() 2. The two compound propositions $\neg P \lor \neg Q \lor \neg R$ and $\neg P \lor (R \to \neg Q)$ are
equivalent.
() 3. The "bubble sort" is a sorting that uses passes where successive items are interchanged
if they are out of order, and it has $O(n \log n)$ complexity.
() 4. A "countable set" is a finite set that can be placed in one-to-one correspondence with
the set of positive integers.
() 5. The coefficient of x^5y^6 in the expansion of $(x-5y)^{11}$ is $\binom{11}{5}(-5)^6$.
() 6. The relation R on $\mathbb{Z} \times \mathbb{Z}$ defined by $(a,b)R(c,d)$ if and only if $(a+d)=(b+c)$ is an
equivalence relation.
() 7. If R_1 and R_2 are reflexive relations on a set S, then $R_1 \oplus R_2$ is reflexive.
() 8. There exits a graph G with five nodes (vertices) and the degree sequence being
{5,4,4,3,1}.
() 9. The complete bipartite graph $K_{n,n}$ with $n \ge 3$ is a nonplanar graph.
() 10. Let T be the minimum spanning tree of a graph G . Then the shortest path between any pair of two nodes (vertices) u and v of G is the path between u and v in T .
• Answer the following questions, (30%)

- ig questions. (30%)
 - (4%) 1. State the well-ordering property.
 - (4%) 2. State the pigeonhole principle.
 - (4%) 3. List all the derangement of the string 1234.
 - (4%) 4. State the Four Color Theorem.
 - (4%) 5. State Dirac's Theorem (for any simple graph to have a Hamiltonian circuit).
 - (10%) 6. Consider the poset ({3,5,9,15,24,45}, /).
 - 6.1) Find the maximal elements.
 - 6.2) Find the minimal elements.
 - 6.3) Is there a greatest element?
 - 6.4) Find all upper bounds of $\{3,5\}$.
 - 6.5) Find the least upper bound of $\{3,5\}$ if it exists.

中原大學 100 學年度 碩士班 入學考試

3月19日15:30~17:00

應用數學系資訊科學組

誠實是我們珍視的美德, 我們喜愛「拒絕作弊,堅守正直」的你! (共2頁第2頁)

科目: 離散數學

□可使用計算機,惟僅限不具可程式及多重記憶者

■不可使用計算機

- \equiv Solve the following problems. (12.5\% x4=50\%)
 - 1. Prove that $1 \cdot 2 + 2 \cdot 3 + 3 \cdot 4 + ... + n(n+1) = n(n+1)(n+2)/3$, where n is a positive integer, by mathematical induction.
 - 2. Consider the equation x+y+z=11, where x, y and z are nonnegative integers.
 - 2.1) How many solutions does it have?
 - 2.2) How many solutions does it have if the condition $x \ge 1$, $y \ge 2$, $z \ge 3$ is satisfied?
 - 2.3) How many solutions does it have if the condition $5 \ge x \ge 2, 6 \ge y \ge 3, 7 \ge z \ge 4$ is satisfied?
 - 3. Solve the recurrence relation $a_n = 6a_{n-1} 11a_{n-2} + 6a_{n-3}$ with the initial conditions $a_0 = 4, a_1 = 7, a_2 = 17$.
 - 4. Show that if G is a bipartite simple graph with v nodes (vertices) and e edges, then $e \le v^2/4$.