元智大學 100 學年度研究所 碩士班 招生試題卷

系(所)別: 山)

工程學系碩組別

組別: 通訊組

科目: 通訊系統

用紙第 / 頁共 2 頁

●不可使用電子計算機

1. (10%) (1). If one of two waveforms

$$s_t(t) = \cos 2\pi f_c t$$

$$s_2(t) = -\cos 2\pi f_c t$$

$$0 \le t \le T_b$$

is transmitted in each interval, what type of modulation is used in the digital communication system? (5%)

(2). Write the phase state in radians of the DPSK signal in response to the binary sequence 10010011 if the reference bit is 1. (5%)

2. (10%) Down link budget of a digital communication system is analyzed. If the transmitted power P_i=10dBW, transmitter antenna gain G_i=20dB; receiver antenna gain G_i=20dB; the free space loss L=106dB, equivalent noise temperature T_e= 100⁰K and the Boltzmann constant=-228dBW/⁰K-Hz. (1). Please determine the signal to noise power density ratio (P_i/N₀) of the receiver. (5%) (2) Determine the bit energy to noise power density ratio (E_b/N₀) if bit duration is 10⁻⁶ sec. (5%)

3.(10%) Figure 1 shows a pair of signals $s_1(t)$, $s_2(t)$.

(1). Prove that the signals $s_1(t)$ and $s_2(t)$ are orthogonal. (5%)

(2). Construct the signal constellation for $s_1(t)$ and $s_2(t)$. (5%)

Fig. 1

4. (10%) The geometric representation is illustrated in Fig. 2 for the case of a two-dimensional signal space with two signals \bar{s}_1 and \bar{s}_2 , that is, N=2 and M=2. Using the maximum likelihood rule to determine the transmit signal if the received signal is \bar{s}_1 .

Fig. 2

元智大學 100 學年度研究所 碩士班 招生試題卷

系(所)別: 通訊工程學系確

組別: 通訊組

科目: 通訊系統

用紙第 2 頁共 2 頁

●不可使用電子計算機

5.(20%) A PCM system uses a uniform quantizer followed by a 5 bit binary encoder. The bit rate of the system is equal to 50*10⁶ bits/sec.

- (1)Please draw the block diagram of PCM transceiver. (10%)
- (2) What is the maximum message bandwidth for which system operates satisfactorily? (10%)

6.(20%) A zero mean white Gaussian noise w(t) with the power spectral density $S_w(t) = N_0/2$ is applied to an ideal bandpass filter with frequency response, as shown in Fig.3.

Fig.3 Frequency response of ideal bandpass filter

The transmission bandwidth $B_t=2W$ Hz, W is the bandwidth of m(t). The output n(t) of band pass filter is the narrowband noise signal $n(t)=n_1(t)\cos 2\pi f_c t - n_0 \sin 2\pi f_c t$.

- (1) Draw the power spectral density $S_n(f)$ of n(t) and write it's formula. (5%)
- (2) If $r(t) = \sqrt{n_I^2(t) + n_Q^2(t)}$, $\Psi(t) = \tan^{-1} \frac{n_Q(t)}{n_I(t)}$, and $n(t_i)$, $n_I(t_i)$, $n_Q(t_i)$ are Gaussian random variable, what are the types of random variables $r(t_i)$ and $\psi(t_i)$?(5%)
- (3) Determine the average power of n(t). (5%)
- (4) Draw the power spectral density of $n_I(t)$ and $n_Q(t)$ and determine the average power of $n_I(t)$ and $n_Q(t)$. (5%)
- 7. (20%) The minimum distance $d_{min}=3$ for a Hamming code (7,4). (1). Please use the generator polynomial $g(x) = 1 + x + x^3$ to encode the message sequence 1101. (10%) (2). Compute the syndrome for the received word 0111101. (10%)