元智大學 100 學年度研究所 碩士班 招生試題卷 條(所)別: 通訊工程學系碩 士班 組別: 微波組 科目: 電子學 用紙第 | 頁共 > 頁 ## ●不可使用電子計算機 1. Sketch V_x as a function of I_x for the following circuit. Assume a constant-voltage (15%) model. ($D_{on} = 0.8 \text{ V}$) ($I_S = 8 \times 10^{-16} \text{ A}$, $V_T = 26 \text{ mV}$, $R_J = I \text{ K}\Omega$). 15% 2. Design a self-biased common-emitter amplifier for votage gain $A_v = 36.5$. (>%) Assume $V_{CC} = 1.8 \text{ V}$, $I_C = 2 \text{ mA}$, $I_S = 5 \times 10^{-16} \text{ A}$, $\beta = 100$, $V_A = \infty$ and blocking capacitors are large. (a) Determine the required value of R_C and R_B . (b) Calculate the V_{CE} , V_{BE} and I_B . (c) Plot the small signal equivalent circuit that neglects R_B . (Hint. $V_{BE} = V_T \ln(I_C / I_S)$ and $V_T = 26 \text{ mV}$) 20% 註 1: ln(2)=0.693 註 2: 三小題配分,分別為 (a)7%; (b)7%; (c)6% 3. Plot the schematic circuit of a NMOS common-source amplifier with (a) (15%) current-source load that use PMOS device and (b) diode-connected load that uses NMOS device. These are CMOS CS amplifiers and explain the advantages of these circuits. 15% 意主:(a)8%;(b)2%. ## 元智大學 100 學年度研究所 碩士班 招生試題卷 《(sc)su. 通訊工程學系碩 組別: 微波組 科目: 電子學 用紙第 ン 頁共 ≥ 頁 ## ●不可使用電子計算機 4. The CMOS operational amplifier shown in Fig. 1 has the following device geometries (in μm). | (20%) | | | | | | | | | | |-------|------------|--------|--------|-------|-------|--------|--------|--------|----------------| | (2/0) | Transistor | Q_1 | Q_2 | Q_3 | Q4 | Q_5 | Q_6 | Q7 | Q ₈ | | | W/L | 20/0.8 | 20/0.8 | 5/0.8 | 5/0.8 | 40/0.8 | 10/0.8 | 40/0.8 | 40/0.8 | Assume $I_{REF} = 90 \mu A$, $V_m = 0.7 \text{V}$, $V_{lp} = -0.8 \text{V}$, $\mu_n C_{ox} = 160 \mu A/V^2$, $\mu_p C_{ox} = 40 \mu A/V^2$, $V_{DD} = V_{SS} = 2.5 \text{V}$, $|V_A| = 10 \text{V}$ for all devices. Find I_D , $|V_{OV}|$, g_m and r_o for all devices (12%). Also find the open-loop voltage gain in dB scale (8%). Sketch Bode plots for the magnitude and phase of the transfer function $$T(s) = \frac{10^2 (1 + s/10^5)}{(1 + s/10^3)(1 + s/10^4)}$$ Determine the approximated values for magnitude and phase at $\omega = 10^6$ rad/s. (10%) A shunt-shunt feedback amplifier is shown in Fig. 2, where the parameters are given as follows: R_s = (2-0%) 1K, $R_{id} = 10$ K, $R_{os} = 10\Omega$, $A_v = -10000$, $R_f = 10$ K, and $R_L = 10$ K. (a) Find the basic amplifier gain A_f and the feedback factor β . (10%) (b) Find the feedback gain A_f and the voltage gain V_o/V_s . (10%) Fig. 2