元智大學 100 學年度研究所

資訊工程學系碩 組別: 不分組 士班

●不可使用電子計算機

Multiple-choice questions

For each of questions 1-4, pick exactly one of (A), (B), (C) and (D). A correct answer earns 7 points, and an incorrect one earns nothing

1 (7 points). Let $\mathbb N$ be the set of natural numbers and $\mathbb Q$ be the set of rational numbers. Which one of the following statements is true?

- (A). There exists a real number r > 0 satisfying |q-r| > r/2 for all $q \in \mathbb{Q}$.
- (B). Let 2^N be the power set of N. Then there does not exist a function $f \colon 2^{\mathbb{N}} \to [\,0,1\,]$ with $\{f(S) \mid S \in 2^{\mathbb{N}}\} = [\,0,1\,]$
- (C). There exists a one-to-one and onto function f: N → Q.
- (D). None of the above.

2 (7 points). Which one of the following statements is true?

- (A). Every tree has a Hamiltonian cycle.
- (B). Every 2-regular graph is planar.
- (C). There exist real numbers x_1, x_2, \dots, x_5 satisfying

$$\max_{i \in \{1,2,3,4\}} |x_i - x_{i+1}| < \frac{|x_1 - x_5|}{4}.$$

- (D). None of the above.
- 3 (7 points). Which one of the following statements is true?
 - (A). Every bipartite graph is planar.
 - (B). Let G = (V, E) be a simple undirected graph without isolated vertices, where |V| = 5. Then G has two distinct vertices with the same
 - (C). Every 7-element abelian group has a 4-element subgroup.
 - (D). None of the above.
- 4 (7 points). For each positive integer d and real number x, let

$$P_d(x) = \sum_{i=1}^{d} (d-2j) x^j$$
,

for example, $P_3(x) = x - x^2 - 3x^3$. We say that a positive integer t is good if

$$\sum_{k=1}^{7t} |P_t(k)| = 6t - 1.$$

How many good positive integers are there?

- (A). Zero.
- (B). Two.
- (C). Three.
- (D). None of the above.

元智大學 100 學年度研究所 碩士班 持

招生試題卷

条(所)別: 士班

組別: 不分組

科目: 離散數學

用纸第 2 頁共 2 頁

●不可使用電子計算機

Fill-in-the-blank questions

> For problems 1-9, fill in each blank with a real number.

1 (8 points). There are _____ subsets of the set {1,2}.

2 (8 points). Let $a_{i,j} \in \{0,1\}$ for all $i \in \{1,2,3,4\}$ and $j \in \{1,2,\dots,1000\}$. If $\sum_{j=1}^{1000} a_{i,j} < 250$ holds for all $i \in \{1,2,3,4\}$, then

$$\min_{j \in \{1,2,\dots,1000\}} \sum_{i=1}^4 a_{i,j} = \underline{\hspace{1cm}}.$$

3 (8 points). It is known that the complete graph on 4 vertices has 6 edges.

The complete graph on 5 vertices has _______edges.

4 (8 points). Let G=(V,E) be a simple undirected graph with |V|=512. Suppose that G is 9-regular, i.e. every vertex of G has degree 9. Then

$$\frac{9 \cdot |V|}{|E|} = \underline{\hspace{1cm}}.$$

5 (8 points).

$$\sum_{i=1}^{30} i =$$

6 (8 points). For each positive integer x, define $x \mod 97$ to be the remainder of x divided by 97. For example, 204 mod 97 is 10, and 100 mod 97 is 3. Note that the remainder of any positive integer divided by 97 is in $\{0, 1, \ldots, 96\}$. We have

$$\frac{\sum_{i=1}^{98} 2^{(3i \mod 97)}}{2^{99} - 8} = \underline{\hspace{2cm}}.$$

7 (8 points). For any positive integers x and y, denote their greatest common divisor by gcd(x,y). Then

$$\max_{k \in \{1,2,3,4,5\}} \max_{q \in \{1,2\}} \max_{r \in \{1,2,3\}} \frac{\gcd(kq+r,k)}{\gcd(k,r)} = \underline{\hspace{1cm}}$$

8 (8 points). If α and β are two distinct complex numbers satisfying

$$\alpha^2 + \alpha + 3 = \beta^2 + \beta + 3 = 0,$$

then

9 (8 points). It is known that 541 is a prime. If x and y are integers satisfying $7^{541} = 541x + y$ and $0 \le y \le 540$, then y =______.