106 CHO2

國立臺北科技大學 106 學年度碩士班招生考試 系所組別:3520 化學工程與生物科技系化學工程碩士班乙組 第一節 物理化學 試題

第一頁 共一頁

注意事項:

- 1.本試題共7題,配分共100分。
- 2.請標明大題、子題編號作答,不必抄題。
- 3.全部答案均須在答案卷之答案欄內作答,否則不予計分。
- 1. Two moles of an ideal gas for which $C_{V,m} = 3/2$ R undergoes the following two-step process: (1) From an initial state of the gas described by $T = 15^{\circ}$ C and P = 130 kPa, the gas undergoes an isothermal expansion against a constant external pressure of 38 kPa until the volume has doubled. (2) Subsequently, the gas is cooled at constant volume. The temperature falls to -20° C. Calculate q, w, ΔU , and ΔH for each step and for the overall process. (16%)
- 2. The dissolution of 6.20 g of a substance in 660 g of benzene at 298 K raises the boiling point by 0.575°C. Note that $K_f = 5.12$ K kg mol⁻¹, $K_b = 2.53$ K kg mol⁻¹, and the density of benzene is 0.8766 g cm⁻³. Calculate the freezing point depression, the ratio of the vapor pressure above the solution to that of the pure solvent, the osmotic pressure, and the molecular weight of the solute. $P_{benzene}^* = 103$ Torr at 298 K. (15%)
- 3. Consider the cell:

$$Fe(s) | FeSO_4 (aq, a_{\pm} = 0.0250) | Hg_2SO_4(s) | Hg(l)$$

- (a) Write the cell reaction. (5%)
- (b) Calculate the cell potential, the equilibrium constant for the cell reaction, and Gibbs energy at 25°C. (9%)

For the half-cell:
$$Hg_2SO_4 + 2 e^- \rightarrow 2 Hg + SO_4^{2-}$$
, $E^\circ = 0.6125 \text{ V}$, $Fe^{2^+} + 2 e^- \rightarrow Fe$. $E^\circ = -0.447 \text{ V}$.

- 4. If an electron passes through an electrical potential difference of 1 V, it has an energy of 1 electron-volt. What potential difference must it pass through in order to have a wavelength of 0.380 nm? (10%)
- 5. Pulsed lasers are powerful sources of nearly monochromatic radiation. Lasers that emit photons in a pulse of 5.00 ns duration with a total energy in the pulse of 0.175 J at 875 nm are commercially available.
 - (a) What is the average power in units of watts associated with such a pulse? (5%)
 - (b) How many 1000-nm photons are emitted in such a pulse? (5%)
- 6. The reaction rate as a function of initial reactant pressures was investigated for the reaction

$$2 \text{ NO}(g) + 2 \text{ H}_2(g) \rightarrow \text{ N}_2(g) + 2 \text{ H}_2\text{O}(g)$$

and the following data were obtained:

	Run	$P_{0,\mathrm{H}_2}/\mathrm{kPa}$	$P_{0,NO}/\text{kPa}$	Rate / kPa s ⁻¹
\ -	1	53.3	40.0	0.137
	2	53.3	20.3	0.033
	3	38.5	53.3	0.213
	4	19.6	53.3	0.105

What is the rate law expression for this reaction? (20%)

7. The following data were obtained for the adsorption of krypton on a 1.21 g sample of a porous solid:

Pressure / Torr
$$1.11$$
 3.08 Volume adsorbed / cm³ (STP) 1.48 1.88

If the saturation vapor pressure is 19.0 Torr, estimate a surface area for the solid, assuming that a molecule of krypton occupies an area of 2.1×10^{-21} m². (15%)