(100)輔仁大學碩士班招生考試試題

考試日期:100年3月18日第 3 節

本試題共 / 頁 (本頁為第 / 頁)

科目: 微積分

系所組 企業管理學系管理學碩士班乙組

1. (14 %) Find the following limits.

(a)
$$\lim_{x\to 0} \frac{\sqrt{1-x}-\sqrt{1+x}}{2x}$$

- (b) $\lim_{n\to\infty} \sum_{i=1}^n \frac{1}{n+i}$
- 2. (21 %)
 - (a) Find $\int \sqrt{1-x^2} dx$
 - (b) Evaluate $\int_0^1 \frac{1}{x^{0.2011}} dx$
 - (c) Evaluate $\int_{\Omega} \frac{1}{1+x^2+y^2} dx dy$, where $\Omega = \{(x,y)|x^2+y^2 \le 1\}$
- 3. (10 %) State and prove the Mean Value Theorem.
- 4. (10 %) Use Newton's method to approximate $\sqrt[3]{22}$, continuing until two successive iterations agree to three decimal places.
- 5. (10 %) Suppose the profit function of a company selling x units of one product and y units of another product is

$$P(x,y) = 12x + 9y - 450 - 0.01(4x^2 + xy + y^2).$$

Find the pair (x, y) that maximizes the company's profit and determine the maximum profit.

6. (10 %) A company has a production function with three inputs x, y and z given by

$$f(x, y, z) = 50x^{2/5}y^{1/5}z^{1/5}$$
.

The total budget is \$24000 and the company can by x, y and z at \$80,\$12 and \$10 per unit, respectively. What combination of inputs will maximize production?

7. (15%)

- (a) Find the Taylor series of $f(x) = \sin x$ at x = 0.
- (b) Use (a) to find the approximate value of $\int_0^1 \frac{\sin x}{x} dx$ up to the third decimal place.
- 8. (10%) Solve the differential equation and initial condition

$$\begin{cases} y' = 6x - 2xy \\ y(0) = 2 \end{cases}$$