(100)輔仁大學碩士班招生考試試題

考試日期:100年3月18日第三節

本試題共 二 頁 (本頁為第 一 頁)

科目:電子學

系所組:電機工程學系乙、丁組

- 1. For the circuit in Fig.1, assuming the amplifier is ideal:
 - (1) Find the transfer function $T(s)=V_o(s)/V_i(s)$ in terms of C_1 , C_2 , and R.(8%)
 - (2) For $C_1=C_2=0.5\mu F$ and $R=100k\Omega$, find the location of the pole(s) and zero(s), and sketch Bode plots for the magnitude response and the phase response. (12%)

Fig. 1.

- 2. In Fig. 2, for the emitter follower biased at I_C =1mA and having r_x =100 Ω , r_o =100k Ω , R_{sig} = R_L =1k Ω , β =100, C_{μ} =2pF, and f_T =400MHz:
 - (1) Find low-frequency gain. (10%)
 - (2) Find the f_z , R_μ , R_π , and f_H . (10%)

Fig. 2.

- 3. For the circuit in Fig.3, $I_D = 1 \text{mA}$, $R_I = 1 \text{M}\Omega$, $R_2 = 4 \text{M}\Omega$, and $V_{GS} = 0.8 \text{V}$. The MOSFET has $V_i = 0.6 \text{V}$. When channel length modulation, and parasitic are neglected,
 - (1) What is the feedback type of this circuit in terms of series and shunt? (2%)
 - (2) Find the feedback factor (β). (3%)
 - (3) Find voltage gain V_o/V_i by feedback analysis. (10%)
 - (4) Find input resistance (R_i) and output resistance (R_o) . (5%)

Fig. 3.

- ※ 注意:1.考生須在「彌封答案卷」上作答。
 - 2.本試題紙空白部份可當稿紙使用。
 - 3.考生於作答時可否使用計算機、法典、字典或其他資料或工具,以簡章之規定為準。

(100)輔仁大學碩士班招生考試試題

考試日期:100年3月18日第三節

本試題共 二 頁 (本頁為第二頁)

科目:電子學

系所組:電機工程學系乙、丁組

- 4. For circuits in Fig. 4, all transistors operate at saturation region and their corresponding transconductance of M_x is denoted as g_{mx} . As the transistors are symmetric, and the channel length modulation, the body effect, parasitic are neglected,
 - (1) Find the voltage gain of Fig. 4(a). (10%)
 - (2) Find the voltage gain of Fig. 4(b). (10%)

Fig. 4

- 5. Consider the circuit shown in Fig. 5(a)
 - (1) If $Z_1 \sim Z_5$ represent general impedances and the two op amps are ideal, find the impedance (Z_{in}) from V_t to the ground. (10%)
 - (2) Derive the transfer function of Fig. 5(b) and determine the type of this filter. After that, find out the design of $Z_1 \sim Z_5$ with resistors and capacitors to replace the inductor. (10%)

※ 注意:1.考生須在「彌封答案卷」上作答。

- 2.本試題紙空白部份可當稿紙使用。
- 3.考生於作答時可否使用計算機、法典、字典或其他資料或工具,以簡章之規定為準。