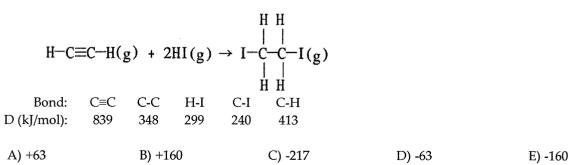
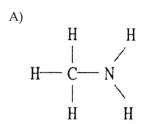
國立臺灣海洋大學 106學年度研究所碩士班招生考試試題

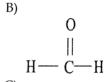
考試科目:普通化學

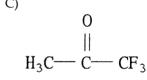
系所名稱:生命科學暨生物科技學系碩士班乙組

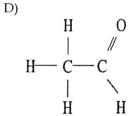

*可使用計算器

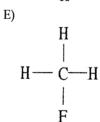
1. 答案以橫式由左至右書寫。2. 請依題號順序作答。


1) One angstrom, syml				
A) ₁₀ -30	B) 1030	C) ₁₀ 24	D) ₁₀ -9	E) ₁₀ -24
2) 1.55 kg/m ³ is equiva	lent tog/L.			
A) 6.83	B) 3.58 × 1012	C) 1.55	D) 1.95×10^{3}	E) 1.60×10^9
3) Which atom has the	smallest number of ne	eutrons?		
A) fluorine-19	B) carbon-14	C) neon-20	D) nitrogen-14	E) oxygen-16
4) There are 6	electrons, pro	otons, andn	eutrons in an atom of	132 54 Xe.
A) 54, 54, 78	B) 54, 54, 132	C) 78, 78, 132	D) 132, 132, 54	E) 78, 78, 54
5) What is the coefficie	nt of O2 when the follo	owing equation is con	npleted and balanced?	
		0 1	7	
C ₄ H ₈ O ₂ +	O ₂ ->			
A) 5	B) 1	C) 3	D) 2	E) 6
6) A compound that is	composed of carbon, h	nydrogen, and oxyger	n contains 70.6% C, 5.9%	H, and 23.5% O l
			is the molecular formula	
A) C ₈ H ₄ O	B) C9H ₁₂ O	C) C ₅ H ₆ O ₂	D) C ₈ H ₈ O ₂	E) C ₄ H ₄ O
7) Given the following	reactions			
_	$V_2 + O_2 \qquad \Delta H = 0$	-180 kJ		
2NO + O	$_2 \rightarrow 2NO_2 \Delta H = 0$	-112 kJ		
the enthalogy of the	partian of nitrogen	th average to the desire	nituanan disada	
the entitately of the r	eaction of nitrogen wit	ni oxygen to produce	innogen aioxide	
$N_2 + 2O_2$	$2 \rightarrow 2NO_2$			
is kJ.				
A) -68	B) 68	C) -146	D) 292	E) -292
8) Which of the followi	ng are strong electroly	tes?		
HCl				
HC ₂ H ₃ O ₂				
NH ₃				
KCl				
ICI				


B) HC2H3O2, I	(Cl			
C) HCl, NH3, K	(Cl			
D) HCl, HC ₂ H ₃	O ₂ , KCl			
E) HCl, KCl	. <u>2</u> .			
E) ITCI, ITCI				
9) How many grams	of sodium chloride are	there in 55.0 mL of a 1	.90 M aqueous solutio	n of sodium chloride?
A) 0.105	B) 6.11	C) 6.11×103	D) 12.2	E) 3.21
	internal energy of a sys	stem that absorbs 2,500	J of heat and that doe	s 7,655 J of work on the
surroundings is _		G) = 1==		
A) 5,155	B) 10,155	C) -5,155	D) -10,155	E) 1.91×10^7
11) The energy (I) rea	uired for an electronic t	rancition in a Robe bud	rogan atom from n = '	2 to n = 2 io I
A) 4.00×10^{-19}	arrea for arrefectionic i	iansinon in a bom nya	rogen atom from it 2	2 to 11 – 3 is j.
B) -3.00 × 10 ⁻¹⁹				
C) 3.00 × 10-19				
D) 4.60 × 1014				
E) -7.90 × 10-19				
12) The alamand that		C	2 22 2 .	
	corresponds to the elect	_	_	F) 1
A) lithium	B) nitrogen	C) beryllium	D) carbon	E) boron
13) The first ionization	n energies of the elemer	nts as you go	from left to right acros	es a period of the
	l as you go fro			
A) increase, incr		in the sotion to the to	p of a group in the tac	
B) increase, dec				
C) decrease, inc				
D) decrease, dec				
E) The first ioni	zation energies of the el	ements are completely	unpredictable.	
	lements, has t	_	•	
A) Br	В) Н	C) I	D) F	E) Cl
15) In the resonance for	orm of ozone shown be	low, the formal charge	on the central oxygen	atom is
,	· · · · · · · · · · · · · · · · · · ·	,	on the contrar oxygen	
0 = 0 -	·••			
0 = 0 -	• • •			
A) +1	B) 0	C) -1	D) +2	E) -2
16) Hoing the table -C	avanaga har damanata	halarız tha ATT for the	onation in 17	
10) Using the table of	average bond energies	below, the ΔH for the r	eaction is kJ	
		н н		
		ĪĪ		


16)




- 17) The basis of the VSEPR model of molecular bonding is _____.
 - A) hybrid orbitals will form as necessary to, as closely as possible, achieve spherical symmetry
 - B) regions of electron density in the valence shell of an atom will arrange themselves so as to maximize overlap
 - C) atomic orbitals of the bonding atoms must overlap for a bond to form
 - D) electron domains in the valence shell of an atom will arrange themselves so as to minimize repulsions
 - E) regions of electron density on an atom will organize themselves so as to maximize *s*-character
- 18) Which one of the following substances will have hydrogen bonding as one of its intermolecular forces?

19) Arrange the following gases in order of increasing average molecular speed at 25 °C.

A)
$$CO_2 < O_2 < N_2 < He$$

B) He
$$< O_2 < N_2 < CO_2$$

C) He
$$< N_2 < O_2 < CO_2$$

D)
$$CO_2$$
 < He < N_2 < O_2

E)
$$CO_2 < N_2 < O_2 < He$$

A) sp	B) sp2	C) sp3	D) sp3d	E) _{sp} 3 _d 2
	te is reacted with concent ate with excess hydrochl	•		
A) 1.82×10^3	B) 1.09 × 102	C) 8.70 × 102	D) 1.82×10^4	E) 2.85×10^4
	1.5 P (atm) 1.0 0.5 - 0 -10 (x 0 10 20 30 4 T (°C)	y 0 50 60 70	
22) The phase diagram A) supercritical f B) gas C) liquid D) solid E) crystal	i of a substance is given a luid	bove. This substance	is a at 30 °C a	nnd 0.5 atm.
A) no orderly str B) appreciable ir C) much larger a D) a long-range r	liffer from amorphous so ucture itermolecular attractive fo toms, molecules, or ions repeating pattern of atom iles, or ions that are close	orces s, molecules, or ions	e solids have	
	nds that are semiconducte	_		
A) 5	B) 1	C) 3	D) 2	E) 4
B) is one with mo C) must be in cor	nigher concentration thar ore than one solute ntact with undissolved so theory and cannot actual	olid		
26) Which of the follow A) pure H ₂ O B) aqueous KF (0 C) aqueous FeI ₃ D) aqueous gluco E) aqueous sucro	(0.24 m) ose (0.60 m)	lowest freezing poin	nt?	
, 1	` '			

20) The hybridization of the carbon atom in carbon dioxide is _____.

27) The rate law for a reaction is

$$rate = k[A][B]$$

Which one of the following statements is <u>false</u>?

- A) The reaction is first order overall.
- B) k is the reaction rate constant
- C) The reaction is first order in A.
- D) The reaction is first order in [B].
- E) If [A] is doubled, the reaction rate will increase by a factor of 2.
- 28) At elevated temperatures, nitrogen dioxide decomposes to nitrogen oxide and oxygen:

$$NO_2 (g) \rightarrow NO (g) + \frac{1}{2}O_2 (g)$$

The reaction is second order in NO₂ with a rate constant of 0.543 M⁻¹s⁻¹at ³⁰⁰°C. If the initial [NO₂] is 0.260 M, it will take _____s for the concentration to drop to 0.075 M.

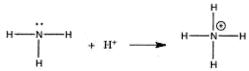
- A) 17.5
- B) 0.0880
- D) 0.299
- E) 2.29
- 29) How is the reaction quotient used to determine whether a system is at equilibrium?
 - A) At equilibrium, the reaction quotient is undefined.
 - B) The reaction is at equilibrium when $Q = K_{eq}$.
 - C) The reaction is at equilibrium when $Q < K_{eq}$.
 - D) The reaction is at equilibrium when $Q > K_{eq}$.
 - E) The reaction quotient must be satisfied for equilibrium to be achieved.

Consider the following table of K_{sp} values.

Name	Formula	K _{sp}
Cadmium carbonate	CdCO ₃	5.2 × 10 ⁻¹²
Cadmium hydroxide	Cd(OH) ₂	2.5×10^{-14}
Calcium fluoride	CaF ₂	3.9 × 10-11
Silver iodide	AgI	8.3 × 10 ⁻¹⁷
Zinc carbonate	ZnCO3	1.4×10^{-11}

- 30) Which compound listed below has the greatest molar solubility in water?
 - A) CdCO₃
- B) ZnCO₃
- C) Cd(OH)₂
- D) AgI
- E) CaF₂
- $^{31)}$ A solution of NaF is added dropwise to a solution that is 0.0122 M in $^{8a^{2+}}$. When the concentration of $^{F-}$ exceeds _____ M, BaF2 will precipitate. Neglect volume changes. For BaF2, $K_{sp} = 1.7 \times 10^{-6}$. A) $_{2.1} \times 10^{-8}$ B) $_{1.4} \times 10^{-4}$ C) $_{3.0} \times 10^{-3}$ D) $_{1.2} \times 10^{-2}$ E) $_{7.0} \times 10^{-5}$

32) Consider the following reaction at equilibrium:


$$2C^{O_2}(g)$$
 $\stackrel{\bullet}{\Longrightarrow}$ $2CO(g)$ + $^{O_2}(g)$ $\Delta H^{\circ} = -514 \text{ kJ}$

Le Châtelier's principle predicts that removing O_2 (g) to the reaction container will _____.

- A) increase the partial pressure of CO
- B) decrease the partial pressure of CO
- C) decrease the value of the equilibrium constant
- D) increase the partial pressure of CO₂
- E) increase the value of the equilibrium constant
- 33) Of the acids in the table below, _____ is the strongest acid.

Acid	Ka		
HOAc	1.8 × 10-5		
HCHO ₂	1.8×10^{-4}		
HClO	3.0×10^{-8}		
HF	6.8×10^{-4}		

- A) HClO
- B) HOAc
- C) HOAc and HCHO₂
- D) HF
- E) HCHO₂
- 34) In the gas phase reaction below, NH₃ is acting as a(n) _____ base but <u>not</u> as a(n) _____ base.

- A) Arrhenius, Brø nsted-Lowry
- B) Arrhenius, Lewis
- C) Lewis, Arrhenius
- D) Lewis, Brø nsted-Lowry
- E) Brø nsted-Lowry, Lewis
- 35) Which of the following is not one of the 12 principles associated with green chemistry?
 - A) use of renewable feedstocks
 - B) less hazardous chemical syntheses
 - C) distribution of chemical by-products into oceans
 - D) inherently safer chemistry for accident prevention
 - E) promotion of the use of catalysts
- 36) A reaction that is spontaneous as written _____
 - A) will proceed without outside intervention
 - B) has an equilibrium position that lies far to the left
 - C) is also spontaneous in the reverse direction
 - D) is very rapid
 - E) is very slow

37) In the Haber proce	ss, ammonia is synthes	ized from nitrogen and	d hydrogen:	
$N_{2}(g) +$	$^{3\text{H}_2}$ (g) \rightarrow $^{2\text{NH}_3}$ (g)	g)		
	nis reaction is -33.3 kJ/m ntm H2, and 0.85 atm B) -118.0		298 K for a reaction mi D) -41.9	xture that consists of E) -1.0
	educed in the reaction l $\mathrm{H^+}$ + $\mathrm{Cr_2O7^{2^-}}$ \rightarrow F		1 ₂ O	
A) Cr	B) O	C) Fe	:	D) H
A) attaching a drB) attaching an aC) coating the pipipeD) attaching an a	n of a metal pipe agains by cell to reduce any me active metal to make the pe with another metal to active metal to make the pe with a fluoropolyme	tal ions which might be pipe the cathode in a whose standard reduce pipe the anode in an	oe formed n electrochemical cell tion potential is less neg electrochemical cell	
40) The half-life of a ra	dionuclide .			
	ith increased temperatu	ire		
C) gets shorter w				
E) gets shorter w	rith increased temperati ith passing time	ure		
41) Which one of the fo	ollowing forms of radia	tion can penetrate the	deepest into body tissu	ue?
A) beta	B) proton	C) positron	D) alpha	E) gamma
42) The Haber process	is used to make	from		
A) NO ₂ , O ₂	B) O ₂ , KClO ₃	C) NO, N ₂	D) HNO3, N2	E) NH3, N2
A) the empty d o B) d electrons m	ing metals with d ¹⁰ ele rbitals absorb all of the ust be emitted by the co electrons to form bond	visible wavelengths mplex in order for it t		ecause

E) there is no d electron that can be promoted via the absorption of visible light

D) a complex must be charged to be colored

	•	0	_	NH3 < H2NC2H4N	H ₂ , which octahedral
			onic transition at sho	ortest wavelength?	
	[Ti(H2NC2H4NH	[2)3] ³⁺			
B)	[Ti(H ₂ O) ₆] ³⁺				
C)	[Ti(NH3)6] ³⁺				
D)	[TiF ₆] ³ -				
E)	[TiCl ₆] ³ -				
45) How	many chiral cente	ers are there in CH	I3CHClCH2CH2CH	IBrCH3?	
A)	1	B) 4	C) 2	D) 0	E) 3
(i (i From A) B) C) D) E)	none (i) and (ii) all (ii), (iii), and (iv) (ii) and (iv)	d gar ve compounds are	e the monomers of n	nucleic acids, called nuc	
	TER. Write the war the Lewis structu	-	nt best completes ea	ich statement or answe	ers the question. (4%/pt)
48) Wate	r can be formed fr	om the stoichiom	etric reaction of hyd	rogen with oxygen:	
	2H ₂ (g) + O	$2(g) \rightarrow 2H_2O(g)$	(g)		
A cor	nplete reaction of	5.0 g of O ₂ with e	xcess hydrogen pro	duces g of I	H ₂ O.