國立臺灣師範大學106學年度碩士班招生考試試題

科目:電子學

適用系所:電機工程學系

注意:1.本試題共 3 頁,請依序在答案卷上作答,並標明題號,不必抄題。2.答案必須寫在指定作答區內,否則依規定扣分。

1. (20 points) Assuming the op amp is ideal in the circuit in Fig. 1, find the voltage gain v_o/v_i and input resistance R_{in} .

2. (20 points) It is required to operate the transistor in the circuit of Fig. 2 at the edge of saturation with $I_D = 0.05$ mA. If $V_t = 0.4$ V, find the required value of R_D .

國立臺灣師範大學 106 學年度碩士班招生考試試題

3. (20 points) For the circuit in Fig. 3, where $\mu_n C_{ox} = 4\mu_p C_{ox} = 280 \text{ }\mu\text{A/V}^2$, $V_{tn} = |V_{tp}| = 0.5 \text{ V}$, $\lambda_n = \lambda_p = 0$, and $(W/L)_n = (W/L)_p = 3$. Find the current I_1 and the voltage V_2 labeled.

Fig. 3

- 4. (20 points) The NMOS transistor in the circuit of Fig. 4 has $V_t = 0.5 \text{ V}$, $\mu_n C_{ox} W/L = 2 \text{ mA/V}^2$, and $V_A = 30 \text{ V}$.
 - (a) Neglecting the dc current in the feedback network and the effect of r_o , find V_{GS} . Then find the dc current I_F in the feedback network to verify that you were justified in neglecting the current in the feedback network.
 - (b) Evaluate the g_m value using the V_{GS} found in (a). Then, find the small-signal voltage gain, v_o/v_{sig} , of this circuit without neglecting the effects of r_o and the feedback network.

國立臺灣師範大學 106 學年度碩士班招生考試試題

5. (20 points) The differential amplifier of Fig. 5 is biased with $I=100~\mu A$. All transistors have $L=2~\mu m$, and Q_1 and Q_2 have W/L=50. All transistors are operated in saturation region. The circuit is fabricated in a process for which $\mu_n C_{ox}=200~\mu A/V^2$ and $\left|V_A'\right|=5~V/\mu m$. Find $g_{m1,2}, r_{o2}, r_{o4}$, and $A_d=v_o/v_{id}$.

