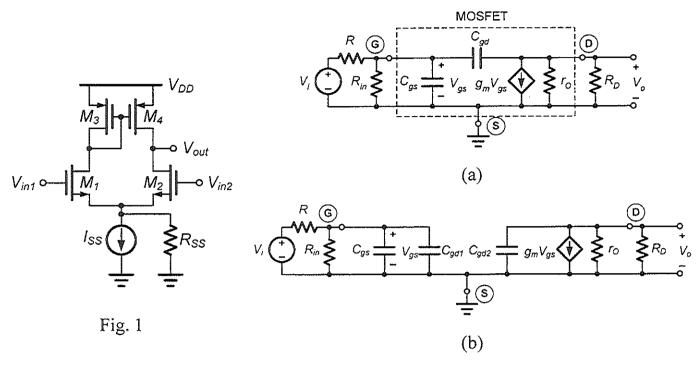
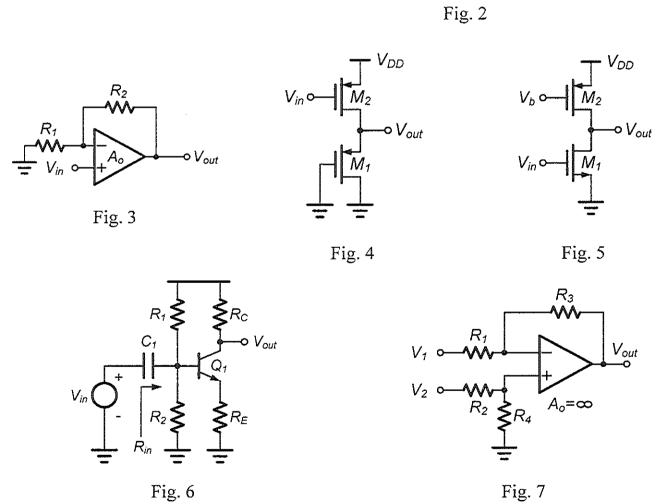
國立臺北大學 106 學年度碩士班一般入學考試試題

系(所)組別:電機工程學系甲組(晶片設計組)

科 目:電子學 B

第1頁 共2頁□可 ☑不可使用計算機


- 1. For Fig. 1, determine (a) common-mode voltage gain, (b) different mode gain, and (c) CMRR ratio, assuming $g_{mn} = g_{mp} = g_m$ and $r_{on} = r_{op} = r_o$ (15%)
- 2. Fig. 2 shows the high-frequency model of a common-source amplifier.
 - (a) Derive dc gain $A_M = V_o/V_i$ of this circuit shown in Fig. 2(a). (5%)
 - (b) Apply Miller's theorem to C_{gd} , find C_{gdl} and C_{gd2} as shown in Fig. 2(b). (10%)
 - (c) Calculate its 3-dB high-frequency of f_H . (5%)
- 3. Compute the closed-loop gain $(A_V=V_{out}/V_{in})$ of the amplifier shown in Fig. 3.
 - (a) Assuming the open-loop amplifier gain A_0 is 20, $R_1=1k\Omega$, $R_2=100k\Omega$. (5%)
 - (b) Assuming the open-loop amplifier gain A_0 is infinite, $R_1=1$ k Ω , $R_2=100$ k Ω . (5%)
- 4. Derive dc gain of the circuit shown in **Fig. 4**, ignoring body effect but including channel length modulation? (5%)
- 5. The common-source stage of **Fig. 5** must provide a voltage gain of 10V/V with a bias current of 0.5mA, assuming $\lambda_1 = \lambda_2 = 0.1 \text{V}^{-1}$, $|V_{tp}| = |V_{tn}| = 0.4 \text{V}$, $\mu_n C_{ox} = 200 \mu \text{A/V}^2$, and $\mu_p C_{ox} = 100 \mu \text{A/V}^2$.
 - (a) Compute the required value of (W/L)₁. (5%)
 - (b) If $(W/L)_2 = 10$ and $V_{DD} = 1.8$ V, calculate the required value of V_b . (5%)
- 6. Fig. 6 shows the Common-emitter (CE) stage amplifier without considering the Early effect of Q₁.
 - (a) Draw the small-signal model. (5%)
 - (b) Find voltage gain of $(A_V = V_{out}/V_{in})$ and input impedance (R_{in}) . (10%)
 - (c) Explain the reasons to have capacitor C_I . (5%)
- 7. The open-loop amplifier gain A_0 is infinite, compute the output voltage V_{out} of the circuit shown in **Fig.** 7. (5%)
- 8. An amplifier with the low-frequency response of $L(s) = \frac{s(s+10)}{(s+100)(s+14)}$
 - (a) Find each location of poles $(\omega_{p1}, \omega_{p2})$ and zeros $(\omega_{z1}, \omega_{z2})$. (10%)
 - (b) Find the 3-dB low-frequency ω_L of the amplifier. (5%)


國立臺北大學 106 學年度碩士班一般入學考試試題

系(所)組別:電機工程學系甲組(晶片設計組)

科 目:電子學 B

第2頁 共2頁 □可 ☑不可使用計算機

