東吳大學100學年度碩士班研究生招生考試試題

				第1頁,共1頁
系級	數學系碩士班	考試 時間	100	分鐘
科 目	高等微積分	本科 總分	100	分
1. (10%) Evaluate the integral $\int_{0}^{\pi} \int_{0}^{\pi} y \cos(xy) dy dx.$				
2. (10%) Prove that $f(x) = \begin{cases} \frac{x}{1+e^{1/x}} & x \neq 0\\ 0 & x = 0 \end{cases}$ is differentiable on $[0,\infty)$.				
3. (10%) Prove that the function $f(x) = \begin{cases} \cos \frac{1}{x} & x \neq 0 \\ 0 & x = 0 \end{cases}$ has no limit as $x \to 0$.				
4. (10%) Prove that $1+x+\frac{x^2}{2!}+\dots+\frac{x^n}{n!} < e^x$ for every $x > 0$ and every $n \in N$.				
5. (10%) Let a_0, a_1, \dots be a sequence of real numbers. If $a_k \to a$ as $k \to \infty$, does $\sum_{k=1}^{\infty} (a_{k+1} - 2a_k + a_{k-1}) \text{ converges}? \text{ If so, what is the value?.}$				
6. (15%) Let $f: R \to R$ is continuous and $F(x) = \int_{0}^{x} f(t-x)dt$.				
 (a) (5%) State the fundamental theorem of Calculus. (b) (10%) Find F'(x). 				
7.(15%) Let $f: \mathbb{R}^2 \to \mathbb{R}$ be a function defined by $f(x, y) = \sqrt{ xy }$.				
(a) (5%) State the definition of that f is differentiable at (x_0, y_0) .				
(b) (10%) Find $\frac{\partial f}{\partial x}(0,0), \frac{\partial f}{\partial y}(0,0)$ and prove that f is not differentiable at (0,0).				
8. (20%) Prove the following: (a) (10%) If <i>I</i> is a closed, bounded interval and $f: I \rightarrow R$ is a continuous function, then <i>f</i> is uniformly continuous on <i>I</i> . (b) (10%) $f(x) = x \ln x$ is uniformly continuous on (0,1).				