國立臺灣海洋大學 106學年度研究所碩士班招生考試試題

考試科目:自動控制及線性代數

系所名稱:通訊與導航工程學系碩士班控制組、通訊與導航工程學系碩士班電

子導航與定位組、電機工程學系碩士班控制組

1. 答案以橫式由左至右書寫。2. 請依題號順序作答。

1. (15%) Consider a unity feedback system with the forward transfer function

$$G(s) = \frac{10K}{s(0.1s+1)}$$

- Compute the error constants K_p , K_v , and K_a .
- Compute the steady-state error $e_{ss}(step)$ and $e_{ss}(ramp)$.
- 2. (15%) Consider a unity feedback system with the forward transfer function

$$G(s) = \frac{Ks}{s^2 - 2s + 1}$$

- Sketch the root locus and find the $j\omega$ -axis crossing.
- Compute the break-in point.
- 3. (20%) Consider a unity feedback system with the forward transfer function

$$G(s) = \frac{K}{s(s+2)(s+4)}$$

- Use Nyquist plot and stability criterion to find the stabilizing range of K.
- Verify your result with Routh stability criterion.

- 4. $B = \begin{bmatrix} 2 & 0 & -1 \\ 0 & 1 & 1 \\ 1 & 0 & -0.5 \end{bmatrix}$. (1) Find the eigenvalues and corresponding eigenvectors for matrix B. (2) Find rank(B). (3) Find det(B). (10%)
- 5. Suppose that λ is an eigenvalue of a square matrix B. (1) Prove that e^{λ} is an eigenvalue of matrix e^{B} . (2) Show that e^{B} is nonsingular for any square matrix B.
- 6. (1) Show that the vectors $v_1=\begin{bmatrix}1\\-1\\3\end{bmatrix}$, $v_2=\begin{bmatrix}0\\0\\1\end{bmatrix}$, and $v_3=\begin{bmatrix}2\\1\\1\end{bmatrix}$ are linearly independent. (2) Suppose that $v=\begin{bmatrix}1\\0\\1\end{bmatrix}$ and $v=a_1v_1+a_2v_2+a_3v_3$. Find $a_1,a_2,$ and $a_3.$
- 7. $B = \begin{bmatrix} 1 & -1 & 1 \\ 1 & 1 & 3 \\ 1 & 0 & 2 \end{bmatrix}$. (1) Find a basis for the null space of matrix B. (2) Find a basis for the range space of matrix B. (10%)
- 8. Suppose that B is a real matrix and $B = -B^T$. Prove that the real part of any eigenvalue λ of matrix B is 0 (i.e., $Re(\lambda) = 0$). (10%)