R 2 aERE 10625 EmEmELtiiid 4R 4E
A8 A ERASE (SEHEH - HFEX)

AFTLHE BEMIEREZ LB A,A

L ZEUBRABLEEZLEE - 2. 5 RABRBAES -

1. The structure for the node of a linked list is defined as follows:
struct list_node {
int data;
struct list_node *link;
K
where link is a pointer to the next node in the linked list.
(a) (10 %) Write a function int numberOfNodes(struct list_node *head) that returns the
number of nodes in the linked list pointed to by pointer head.

(b) (5 %) Fill in the five blanks to complete the function struct list_node *merge(struct
list_node* h1, struct list_node* h2) that merges two sorted linked lists into one sorted
linked list and returns the pointer to the first node of the merged list, where h1 and h2 are
pointers to the first nodes of the two sorted linked lists.

struct list_node *merge(struct list_node* h1, struct list_node* h2)
{
struct list_node*merged, *tail;
if (h1 == NULL) return h2;
if(h2 == NULL) return h1;
if(h1->data < h2->data) {
mergedzhl; h1 = hi->link;
Jelse { |
merged=h2; h2 = h2->link;
}
tail = merged;
while(h1 && h2) {
if(h1->data < h2->data) {
tail->link= __(A) ;hl= __(B) ;
Jelse{
tail->link= __(C) ;h2=_(D) ;
}
tail= __(E)
[351H #%4H)

}

if (h1) tail->link = h1;

if(h2) tail->link = h2;
return merged;

}

2. (a) (7 %) Convert the following array into a max-heap.

Index | [1] | [2] | [3] | [4] | [5] | (6] | [7]
Value|2 |3 (0 |1 |5 |6 |4

(b) (8 %) Give a topological sort of the following directed graph.

3. The following shows a binary search tree, which contains 7 nodes with distinct keys. The
successor of node x in a binary search tree is the node with the smallest key greater than the
key of node x. Note that A, B, ..., G are not keys.

(a) (2 %) Which node is the node with the smallest key?

(b) (4 %) Which node is the successor of node A? Which node is the successor of node B?

(c) (4 %) Suppose that the keys examined for searching for the number 50 in this binary
search tree are 30, 80, 40, and 50 in sequence. Which nodes are the nodes with keys 30,

80, 40, and 50, respectively?

(%2FH #%4H]

(d) (10 %) The structure for the node of a binary search tree is defined as follows:
struct tree_node {
int data;
struct tree_node *left, *right, *parent;
b
where left, right, and parent are pointers to the left child, right child, and parent of a node,
respectively. Complete the function
struct tree_node* successor(struct tree_node *x),
which returns the successor of a node x in a binary search tree if it exists, and NULL if x has no

successor in this tree, by filling in the five blanks.

struct tree_node* successor(struct tree_node *x)
{
struct tree_node *succ;
if (x == NULL) return NULL;
if (x->right 1= NULL) {
succ = x->right;
while (__(A) _ !=NULL){
succ= __(B) ;
}
Jelse{
succ = x->parent;
while(succ I=NULL && _ (C) ==x){
x=_(D) ;succ= __(E) ;

}

return succ;

Al

P —

/\ O(g(n)) » { f(n) : there exist positive constants ¢ and 7 such that
0 <cg(n) <f(n)forall n>ne}.

N
4. (10%) For a given function g(n), we denote b\y Q(g(nythe set of functions

Show that 3n” - 4n = Q(n?) by demonstrating the constants.

5. (10%) Search trees are data structures that support many dynamic-set operations. For the set of
keys {5, 22, 13, 15, 27, 33, 11}, draw binary search trees of height 2, 3, 4, 5 and 6.

[(%3H#%4H]

6. (15%) An array of n elements contains all but one of the integers from 1 to n + 1.

a. Give the best algorithm you can for determining which number is missing if the

array is sorted, and analyze its asymptotic worst-case running time.

b. Give the best algorithm you can for determining which number is missing if the

array is not sorted, and analyze its asymptotic worst-case running time.

7. (15%) Bubble sort is a popular sorting algorithm. It works by repeatedly swapping adjacent
elements that are out of order.

Bubble-Sort (4)

1. fori=1 tolength[4] -1

2 for j = length[4] downto i +1

3. if A[j] <A[j-1]

4 exchange A[j] « A[j—1]

a. lllustrate the operation of Bubble-Sort on the array A= (2,23,17,14,34,12).

b. What is the worst-case running time of Bubble-Sort? How does it compare to
the running time of Merge-Sort?

(54K 34H]

