				國立果華大學招生考試試題 第1頁,共2頁
招	生与	學 年	度	106 招 生 類 別 碩士班
系	所	班	別	物理學系 應用物理碩士班 (一般組)、材料科學與工程學系碩士班
科	吕	名	稱	普通物理
注	意	事	項	

- 1. (5%) (a) What are the basic postulates of the Bohr model of hydrogen atom? (5%) (b) What are the failures of the Bohr model?
- 2. (20%) Please write down the Maxwell's equations and explain their physical meanings.
- 3. (10%) A parallel-plate capacitor is half-filed with a dielectric slab of constant κ_1 , while the other half contains a slab of constant κ_2 , as in Fig. 1. What is the resulting capacitance? Please express your answer in terms of C_0 , the capacitance with no dielectric.

4. (10%) A circular plate has a radius of 12 cm. The plane of the plate is set at a 30° angle to a uniform field E = 450i N/C (Fig. 2). What is the flux through the plate?

- 5. (10%) A sphere of radius R has a charge Q uniformly distributed throughout its volume. For r < R, the potential function is $V(r) = kQ(3R^2-r^2)/2R^3$. Find the radial component of the electric field from V(r).
- 6. (10%) The three capacitors in Fig. 3 have an equivalent capacitance of 12.4 μ F. Find C_1 .

國立東華大學招生考試試題	第乙頁,共乙頁
--------------	---------

r				 					- V .	<u> </u>
招	生气	争 年	度	106		招	生	類	別	碩士班
系	所	班	别	物理學系	應用物理碩士班	(-	般組	.)、;	—— 材料	科學與工程學系碩士班
科	目	名	稱	普通物理						
注	意	事	項							

7. (10%) A cylindrical tube of length L has inner radius a and outer radius b (see Fig. 4). The material has resistivity ρ . Current flows radially from the inner to the outer surface. Show that the resistance is $R = \rho [\ln(b/a)]/2 \pi L$.

Fig. 4

8. The wavefunctions for two waves on a string are:

 $y_1 = 0.03 \sin[\pi(2x+10t)]$ m

 $y_2 = 0.03\sin[\pi(2x-10t)]$ m

(5%) (a) Please derive the equation for the standing wave.

(5%) (b) Locate the 2 nodes that are closest to x=0 (for x>0).

(5%) (c) Locate the 2 antinodes that are closest to x=0 (for x>0).

(5%) (d) Find the amplitude of oscillation at $x=\lambda/8$.