國立臺灣海洋大學 106學年度研究所碩士班招生考試試題

考試科目:生物化學

系所名稱:水產養殖學系碩士班生命科學組

1. 答案以橫式由左至右書寫。2. 請依題號順序作答。

-. Briefly define the following terms (20 points)

1. Entropy

2. Gelatin

3. Essential amino acids

4. Anomeric carbon

5. Ramachandran plots

6. Chitoson

7. Terpene

8. Fluid Mosaic Model

9. α -helix of polypeptide

10. Hyaluranic acid

二. Short Answer Questions (30 points)

- 1. a) Draw the predominant ionic structures of histidine (COOHpKa = 1.8, NH3pKa = 9.2, R group pKa = 6.0), b) calculate the isoelectric point of histidine (5 points)
- 2. When the partial pressure of oxygen tension is 30 mmHg in the muscles; partial pressure of oxygen of 10 mmHg; a) determine the binding of oxygen of human muscle myoglobin (θ Mb) in the physiological condition from resting muscles to extreme excise; b) Under this condition, what percentage of the oxygen bound to in the muscles is delivered during extreme exercise (at 50% saturation of MbO2, P50 = 2.8 mmHg) (5 points)
- 3. DHA is required by marine fishes and shrimp for growth. Survival, and stress resistance, What is the chemical structural of DHA? (5 points)
- 4. Collagen is an abundant structural protein in all animals. What are the major features of the collagen? (5 points)
- 5. Draw a chemical structure showing the basic structure of cholesterol. (5 points)
- 6. Define configurational isomers, enantiomers, anomers, epimers, diastereoimers and conformation isomers, which are described the isomer structure of sugar molecules. (5 points)

三、選擇題(每題二分)

1. If the rate constant for the enzyme catalyzed reaction is $2 \times 10^5/\text{sec}$ and the rate constant for the uncatalyzed reaction is $2 \times 10^{-6}/\text{sec}$, the catalytic power of the enzyme is:

A) 10⁻¹

B) 10¹¹

C) 10⁻¹¹

D) 4×10^{-1}

2. The catalytical	ly active comple	x of ar	ndg	roup is calle	d the	
A) apoenzyme; h	oloenzyme; pros	sthetic	В) арс	enzyme; pro	osthetic; holoenz	zyme
C) holoenzyme; p	prosthetic; apoer	nzyme	D) pro	sthetic; hold	oenzyme; apoena	zyme
3. Enzymes have	active sites whic	th have the g	reatest co	mplementai	rity to the:	
A) substrate.	B) transition s	state. C) p	roduct.	D) both si	ubstrate and pro	duct.
4. Which of the fo	ollowing is an es	sential amino	o acid?			
A) praline B) valine	glutamine	D) glu	tamate		
5. Ketone bodies	are synthesized	in the:				
A) cytosol of mus	cle.	B) mite	ochondria	of liver.		
C) endoplasmic re	eticulum of hear	t. D) plas	sma meml	orane of bra	in.	
6. The pentose ph		ay can provid	e	for biosynth	esis, and	_ for
A) ATP; NADH	B) N	IADPH; ribos	e-5-phosp	hate		
C) NADH; NADPH	D) r	ibose-5-phos	phate; NA	NDH		
7. What are the fi	nal products of a	aerobic catab	oolism?			
A) pyruvate and H	I ₂ O.	B) CO ₂ and	H₂O.			
C) acetyl-CoA and	CO ₂ .	D) pyruvate	and acety	/I-CoA.		
8. Many of the ca	tabolic pathways	s converge to	the comr	non two-car	bon intermediat	e:
A) alanine. B)	acetyl group of a	acetyl-CoA.	C) lactic	acid.	D) glucose.	
9. Dehydrogenase	s are enzymes t	hat:				
A) move hydroger						
3) transfer hydrid	e ions to NAD $^{+}$ (c	or NADP⁺) an	d release	a proton.		
C) transfer hydrog	ens between su	bstrates.				
D) add hydrogens	across double b	onds.				
10. Gluconeogene	sis is the synthe	sis of:				
A) glycogen from (glucose.	B) glucose f	rom non-c	arbohydrate	e precursors.	
C) pyruvate from g	glucose.	D) fatty acid	s from glu	icose.		
11. A key intermed	diate at the bran	ch point in t	he synthe	sis of trypto	phan, phenylalar	nine and
A) shikimate	B) ornithine	C) phos	sphoenolp	yruvate	D) chorismate	

12. The synthesis of AMP is inhibited in bacteria but	not in humans by a class of drugs called					
sulfonamides. This is because sulfonamides						
A) allosterically inhibit ribose phosphate pyrophosphokinase						
B) allosterically inhibit one or more synthetases						
C) inhibit the formation of 5'-phosphoribosylamine						
D) inhibit the synthesis of tetrahydrofolate						
42. The testing account in terms of the testing of the second	antinus four broke ANAD and CNAD in					
13. The initial, common intermediate in purine catal						
A) inosine B) uric acid C) hypoxanthine D)	xanthine					
14. Most coenzymes are derived from, or are						
A) metal ions B) carbohydrates C) amino acids	D) vitamins					
15. The primary control in the clotting of blood is						
A) association of subunits to form different B)	induction					
C) post-translational modification D)	proteolytic cleavage of proenzymes					
16. The hormone, glucagon, activates all of the follow	wing in liver cells except					
A) cAMP protein kinase B) adenylate cyclase						
C) triacylglycerol lipase D) biosynthesis of fatty	acids					
17. The first three reactions in the $β$ -oxidation of sat	urated fatty acids produce?					
A) 2 moles of NADH B) 2 moles of FADH ₂						
C) 2 moles of ATP D) 1 moles of both NAI	OH and FADH₂					
18. Cholesterol enters most extrahepatic tissues						
A) as cholesterol esters found in HDL.						
B) as part of chylomicron remnants which are taken	up by endocytosis.					
C) as unesterified cholesterol from serum.						
D) as part of LDL which is taken up endocytosis.						
19. Palmitic acid can be converted to all of the follow	ring molecules in human hepatocytes except					
A) cholesterol B) oleic acid C) sphingosin	e D) linoleic acid					
20. Reactions in the urea cycle takes place in the						
A) mitochondrial matrix B) cytoplasm						
	D) cytoplasm and mitochondrial matrix					
A) mitochondrial matrix B) cytoplasm	B) cytoplasm					

21. The committed step in ch	olesterol biosynthesis is catalyzed by				
A) HMG-CoA synthase	B) mevalonate kinase				
C) HMG-CoA reductase	D) squalene monooxygenase				
22. What type of linkage occu	urs between ACP and the intermediates in fatty acid biosynthesis?				
A) an ester B) an etner	C) a thioester D) an amide				
23. The biosynthesis of what	amino acid involves reactions which are also part of the urea cycle?				
A) threonine B) histidin	e C) arginine D) lysine				
24. In eukaryotic cells, glycoly	rsis occurs in the, and the TCA cycle reactions take place in				
A) mitochondria; mitochondria B) cytoplasm; cytoplasm					
C) cytoplasm; mitochondria	D) mitochondria; ribosomes				
25. All are linked to the electr	on-transport chain through Complex I accepting electrons from				
A) glycolysis.	B) TCA cycle.				
gluconeogenesis. D) fatty acid oxidation.					