- 1. A heat pump heats a house in the winter and then reverses to cool it in the summer. The interior temperature would be 20°C in the winter and 25°C in the summer. Heat transfer through the walls and ceiling is estimated to be 2000 kJ per hour per degree temperature difference between the inside and outside.
 - (1) If the winter outside temperature is 0°C, what is the minimum power required to drive the heat pump? (15%)
 - (2) For the same power as in part (1), what is the maximum outside summer temperature for which the house can be maintained at 25° C? (20%)
- 2. Calculate the work involved in expanding 20L of an ideal gas to a final volume of 80L against a constant external pressure of 3.5 bar. (15%)
- 3. Where P_1, P_2, P_3, P_4 is pressure at state 1,2,3,4 respectively,

 T_1, T_2, T_3, T_4 is temperature at state 1,2,3,4 respectively,

h₁,h₂,h₃,h₄ is enthalpy at state 1,2,3,4 respectively,

 s_1, s_2, s_3, s_4 is specific entropy at state 1,2,3,4 respectively,

 T_0 is environment temperature,

 $\dot{W}_{s,in}$ is shafted worked done rate on the pump,

 $\dot{W}_{s,out}$ is output power by the turbine,

 $\dot{Q}_{\text{in,h}}$ is the inlet heat transfer rate on the boiler with phase change on high temperature,

 $\dot{Q}_{\text{out,L}}$ is the outlet heat transfer rate on the condenser with Low temperature.

Fig1: steam power plant cycle

科目:熱力學

Given the properties of a steam power plant operates on a cycle with state and process as designated in Fig.1.

- (1) Define the property and explained physical means as following. 6%
 - A. Availability.
 - B. Irreversibility.
 - C. Reversible work.
- (2) Find and prove that the availability of turbine by equation (1). 9%
- (3) What is conditions the availability on turbine as following equation. 5% $P_t = \dot{W}_{s,out}^{Rev} T_0 \dot{P}_{s,t} \dots (1)$

Where Rev is reversible process.

 $\dot{W}_{s,out}^{Rev}$ is the output shaft worked rate by the turbine of reversible process, $\dot{P}_{s,t}$ is the entropy generation rate on the turbine,

 P_t is the output power of turbine.

- (4) Find the availability on pump, where given $\dot{P}_{s,t}$ is entropy generation rate on pump. 5%
- 4. Given the properties the same problem1.
 - (1) How to define the entropy change and the entropy generation rate. 5%
 - (2) What is thermodynamics conditions on the boiler as equation (2) $\dot{Q}_{in,h} = \dot{m}_3 s_3 \dot{m}_2 s_2$...(2) and prove equation (2). 5%
 - (3) Find $\dot{Q}_{out,L}$ by reversible and irreversible process on condenser. 5%
 - (4) The steam power plant operating on cycle. 10%
 - A. Can be bypass the condenser from state 4 to state 2 by pumping mechanic.
 - B. Prove that answer by 1st Law 2nd Law of thermodynamic.