第2節 第|頁,共3頁 # Problem 1. (15%) Consider the Zener-diode regulator circuit shown in Figure 1-1. The diode characteristic is shown in Figure 1-2. Let V_{SS} =24V, R=1.2k Ω , and R_L =6k Ω . - (a) (10%) Find the load voltage v_L . - (b) (5%) Find the source current I_{S} . Fig. 1-1 Fig. 1-2 ## 國立中正大學 106 學年度碩士班招生考試試題系所別:機械工程學系-乙組 科目:電子學 第2節 第2頁,共3頁 ### **Problem 2. (20%)** (a) (10%) Find the values of i_1 and i_2 for the circuit shown below. (b) (10%) Solve for the steady-state values of i_1, i_2, i_3, i_4 , and v_c for the circuit shown below after the switch has been closed for a long time. ## **Problem 3. (15%)** For the circuit shown below, let V_{CC} = 15V, V_{BB} =5V, R_C = 2 k Ω , R_E = 2 k Ω , and β = 100. - (a) (10%) Solve for I_C - (b) (5%) Solve for V_{CE} 第2節 第3頁,共3頁 ## **Problem 4. (30%)** Operational amplifier can be used to synthesize many useful circuits. Please answer the following questions regarding operational amplifier. - (a) (10%) Draw an adder circuit using ideal operational amplifier and resistors. Please verify your result, i.e., show that the circuit possesses the function of adding. - (b) (10%) Draw a differentiator circuit using ideal operational amplifier, resistors, and capacitor. Please verify your result, i.e., show that the circuit possesses the function of differentiation. - (c) (10%) Draw an integrator circuit using ideal operational amplifier, resistors, and capacitor. Please verify your result, i.e., show that the circuit possesses the function of integration. ## Problem 5. (20%) Consider the circuit shown below, where the voltage source is $v_s(t) = 10\cos 3t$ (Volt), and the electronic components are given by $R_1 = 1\Omega$, $R_2 = 2\Omega$, C = 1F, L = 2H. Please derive the governing circuit equation (ordinary differential equation) in terms of the capacitor voltage v_c .