立中正大學106學年度碩士班招生考試試題 電磁晶片組 電機工程學系-計算機工程組 晶片系統組 科目:電子學 光機電整合工程研究所 第2節 第1頁,共2頁 - 1. (a) Use the Miller approximation to calculate the -3 dB frequency of the small-signal voltage gain of a differential stage as shown in Fig. P1, using these parameters: W = 100 μ m, L_{drawn} = 2 μ m, L_d = 0.2 μ m, k' = 60 μ A/V², R_S = 10 k Ω , R_L = 5 k Ω , I₁ = 1 mA, and f_T = 3 GHz (at I_D = 500 μ A). Note that L_{drawn} is the channel length drawn in the layout, and L_d is the lateral diffusion length. (10%) - (b) Calculate the non-dominant pole magnitude for the circuit in (a). (5%) 2. Derive the output impedance R_{out} of the circuit shown in Fig. P2. Assume that all transistors have small-signal output resistance ro and operate in saturation with transconductance gm. (15%) Fig. P2 - 3. The amplifier with feedback is shown in Fig. P3. - (a) What is the feedback topology in this circuit?(3%) - (b) Find the feedback factor. (4%) - (c) Find the open-loop gain. (4%) - (d) Find the closed-loop gain. (4%) - (e) Find the closed-loop output impedance (5%) Fig. P3 ## 國立中正大學106學年度碩士班招生考試試題 電磁晶片組 系所別: 電機工程學系-計算機工程組 晶片系統組 光機電整合工程研究所 第2節 第2頁,共2頁 科目:電子學 - 4. In the circuits of Fig. P4(a) and Fig. P4(b), assume that the reverse saturation current is 5×10^{-16} A for each diode and the thermal voltage is 25 mV. - (a) In the circuit of Fig. P4(a), please calculate the current flowing through each diode. (5%) - (b) In the circuit of Fig. P4(b), please calculate the current flowing through the resistor. (8%) - (c) In the circuit of Fig. P4(c), please plot the input/output characteristic, assuming a 0.7-V constant-voltage drop model. (5%) - 5. The circuits in Fig. P5 is fabricated with the following process parameters: $\mu_n C_{ox} = 200 \ \mu A/V^2$, $\mu_p C_{ox} = 100 \ \mu A/V^2$, $V_{tn} = |V_{tp}| = 0.4 \ V$, and $\lambda = 0 \ V^{-1}$. - (a) Please show that the drain current equals to $\mu_n C_{ox} \cdot \left(\frac{W}{L}\right) \cdot \left(\left(V_{GS} V_{tn}\right) \cdot V_{DS} \frac{1}{2}V_{DS}^2\right)$ for N-type MOSFET to operate in triode region. (5%) - (b) In the circuit shown in Fig. P5(a), compute W/L of Q_1 such that Q_1 can operate at the edge of saturation. Assume that the supply voltage V_{DD} is 1.8 V. (5%) - (c) To provide a voltage gain of 200 for the MOS cascode circuit of Fig. P5(b) with a bias current of 1 mA, please determine the transistor size of $(W/L)_{Q1}=(W/L)_{Q2}$. Assume that $\lambda=0.1$ V⁻¹ in this case. (10%) Fig. P5 - 6. (a) A CMOS logic gate is required to provide the function of $Y = \overline{(A+B) \cdot C + D \cdot (E \cdot F + G)}$, please sketch the schematic using MOS transistors. (4%) - (b) Please provide suitable transistor sizes for the circuit of (a) to have equal rise and fall times. Assume that μ_n =2 μ_p . (4%) - (c) Please use a CMOS logic inverter to derive the dynamic power dissipation. Assume that the supply voltage, operating frequency, output load capacitance are V_{DD} , f, and C_L . (4%)