科目名稱:線性代數【通訊所碩士班甲組】

※本科目依簡章規定「可以」使用計算機(廠牌、功能不拘)(選擇題)

題號:437006 共4頁第1頁

For each of the following questions, please select <u>the best answer</u> from the choices provided. (單選) You do NOT need to provide any justification.

- 1. (5%) Which of the following statement is **False**?
 - (A) If an augmented matrix $[A \ b]$ is transformed into $[C \ d]$ by elementary row operations, then the equations Ax = b and Cx = d have exactly the same solution sets.
 - (B) If a system Ax = b has more than one solution, then so does the system Ax = 0.
 - (C) If matrices A and B are row equivalent, they have the same reduced echelon form.
 - (D) If A is an $m \times n$ matrix and the equation Ax = b is consist for every b in \mathbb{R}^m , then A has m pivot column.
 - (E) If A is an $m \times n$ matrix and the equation Ax = b is consistent for some b, then the columns of A span \mathbb{R}^m .
- 2. (5%) Which of the following statement is **False**?
 - (A) If A and B are row equivalent $m \times n$ matrices and if the columns of A span \mathbb{R}^m , then so do the columns of B.
 - (B) In some cases, it is possible for four vectors to span \mathbb{R}^5 .
 - (C) If \mathbf{u} and \mathbf{v} are in \mathbb{R}^m , then $-\mathbf{u}$ is in $\mathrm{Span}\{\mathbf{u},\mathbf{v}\}$.
 - (D) If A is a 6×5 matrix, the linear transformation $\mathbf{x} \mapsto \mathbf{A}\mathbf{x}$ cannot map \mathbb{R}^5 onto \mathbb{R}^6 .
 - (E) A linear transform is a function.
- 3. (5%) Which of the following statement is **False**?
 - (A) If A and B are $m \times n$, then both AB^T and A^TB are defined.
 - (B) Left-multiplying a matrix B by a diagonal matrix A, with nonzero entries on the diagonal, scales the rows of B.
 - (C) If BC = BD, then C = D.
 - (D) If AB = BA and if A is invertible, then $A^{-1}B = BA^{-1}$.
 - (E) An elementary $n \times n$ matrix has either n or n+1 nonzero entries.
- 4. (5%) Which of the following statement is **False**?
 - (A) If **B** is formed by adding to one row of **A** a linear combination of other rows, then $det(\mathbf{A}) = det(\mathbf{B})$.
 - (B) $\det(\mathbf{A}^T\mathbf{A}) \geq 0$.
 - (C) If $A^3 = 0$, then det(A) = 0.
 - (D) $\det(-\mathbf{A}) = -\det(\mathbf{A})$.
 - (E) If **A** is invertible, then $\det(\mathbf{A}) \det(\mathbf{A}^{-1}) = 1$.
- 5. (5%) Which of the following statement is **False**?
 - (A) If **B** is obtained from a matrix **A** by several elementary row operations, then rank(B) = rank(A).
 - (B) Row operations on a matrix A can change the linear dependence relations among the rows of A.
 - (C) A change-of-coordinates matrix is always invertible.
 - (D) If A is $m \times n$ and linear transformation $x \mapsto Ax$ is onto, then rank A = m.
 - (E) If A is $m \times n$ and rank A = m, then the linear transform $x \mapsto Ax$ is one-to-one.

科目名稱:線性代數【通訊所碩士班甲組】

題號:437006

※本科目依簡章規定「可以」使用計算機(廠牌、功能不拘)(選擇題)

共4頁第2頁

- 6. (5%) Which of the following statement is False?
 - (A) If A is invertible and 1 is an eigenvalue of A, then 1 is also an eigenvalue of A^{-1} .
 - (B) If A contains a row or column of zeros, then 0 is an eigenvalue of A.
 - (C) Each eigenvector of A is also an eigenvector of A^2 .
 - (D) Each eigenvalue of A is also an eigenvalue of A^2 .
 - (E) Eigenvectors much be nonzero vectors.
- 7. (5%) Which of the following statement is **False**?
 - (A) There exists a 2×2 matrix that has no eigenvectors in \mathbb{R}^2 .
 - (B) If A is diagonalizable, then the column of A are linearly independent.
 - (C) A nonzero vector cannot correspond to two different eigenvectors of A.
 - (D) If A and B are invertible $n \times n$ matrices, then AB is similar to BA.
 - (E) If A is an $n \times n$ diagonalizable matrix, then each vector in \mathbb{R}^n can be written as a linear combination of eigenvectors of A.
- 8. (5%) Which of the following statement is False?
 - (A) Two eigenvectors corresponding to the same eigenvalue are always linearly dependent.
 - (B) Similar matrices always have exactly the same eigenvalues.
 - (C) The matrices A and A^T have the same eigenvalues, counting multiplicities.
 - (D) Each eigenvector of an invertible matrix A is also an eigenvector of A^{-1} .
 - (E) If A is similar to a diagonalizable matrix B, then A is also diagonalizable.
- 9. (5%) Which of the following statement is False?
 - (A) If A is orthogonally diagonalizable, then A is symmetric.
 - (B) If **A** is orthogonal matrix, then $\|\mathbf{A}\mathbf{x}\| = \|\mathbf{x}\|$ for all \mathbf{x} in \mathbb{R}^n .
 - (C) By a suitable change of variable, any quadratic form $\mathbf{x}^T \mathbf{A} \mathbf{x}$ can be changed into one with no cross-product term.
 - (D) The largest value of a quadratic form $\mathbf{x}^T \mathbf{A} \mathbf{x}$, for $\|\mathbf{x}\| = 1$, is the largest entry on the diagonal of \mathbf{A} .
 - (E) If P is an $n \times n$ orthogonal matrix, then the change of variable $\mathbf{x} = \mathbf{P}\mathbf{u}$ transforms $\mathbf{x}^T \mathbf{A} \mathbf{x}$ into a quadratic form whose matrix is $\mathbf{P}^{-1} \mathbf{A} \mathbf{P}$.
- 10. (5%) Which of the following statement is False?
 - (A) The set of all vectors in \mathbb{R}^n orthogonal to one fixed vector is a subspace of \mathbb{R}^n .
 - (B) If $\{\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3\}$ is an orthogonal set and if c_1 , c_2 , and c_3 are scalars, then $\{c_1\mathbf{v}_1, c_2\mathbf{v}_2, c_3\mathbf{v}_3\}$ is an orthogonal set.
 - (C) If a square matrix has orthonormal columns, then it also has orthonormal rows.
 - (D) If a vector y coincides with its orthogonal projection onto a subspace W, then y is in W.
 - (E) If a matrix U has orthonormal columns, then $UU^T = I$

科目名稱:線性代數 【通訊所碩士班甲組】

題號: 437006

※本科目依簡章規定「可以」使用計算機(廠牌、功能不拘)(選擇題)

共4頁第3頁

11. (10%) The dimension of the subspace

$$H = \left\{ \left[egin{array}{c} a-3b+6c \ 5a+4d \ b-2c-d \ 5d \end{array}
ight]: a,b,c,d \in \mathbb{R}
ight\}$$

is

- (A) 1.
- (B) 2.
- (C) 3.
- (D) 4.
- (E) 5.

12. (10%) Let

$$\mathbf{A} = \begin{bmatrix} .4 & -.3 \\ .4 & 1.2 \end{bmatrix}$$
. As $k \to \infty$, we obtain \mathbf{A}^k

(A)
$$\begin{bmatrix} -.5 & -1.75 \\ 1.0 & 1.50 \end{bmatrix}$$

(B)
$$\begin{bmatrix} -.75 & -.5 \\ 1.0 & 1.50 \end{bmatrix}$$

(C)
$$\begin{bmatrix} -.5 & 1.50 \\ 1.0 & -.75 \end{bmatrix}$$

(D)
$$\begin{bmatrix} -1.5 & -.75 \\ 1.0 & 2.50 \end{bmatrix}$$

(E)
$$\begin{vmatrix} -.5 & -.75 \\ 1.0 & 1.50 \end{vmatrix}$$

13. (10%) Let **J** be the $n \times n$ matrix of all 1's, and consider $\mathbf{A} = (a - b)\mathbf{I} + b\mathbf{J}$; that is

$$\mathbf{A} = \left[\begin{array}{ccccc} a & b & b & \dots & b \\ b & a & b & \dots & b \\ b & b & a & \dots & b \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ b & b & b & \dots & a \end{array} \right]$$

Then the eigenvalues of $\bar{\mathbf{A}}$ are

- (A) a + b, and a + (n 1)b.
- (B) a nb, and a + nb.
- (C) a b, and a + (n 1)b.
- (D) a-2b, and a+nb.
- (E) a + b, and a (n 1)b.

科目名稱:線性代數【通訊所碩士班甲組】

題號:437006

※本科目依簡章規定「可以」使用計算機(廠牌、功能不拘)(選擇題)

共4頁第4頁

14. (10%) The determinant of

$$\mathbf{A} = \begin{bmatrix} 3a & -7 & 8 & 9 & -6 \\ 0 & 2 & -5 & 7 & 7 \\ 0 & 0 & 1 & 5 & 0 \\ 0 & 0 & 2 & 4 & -1 \\ 0 & 0 & 0 & -2 & 0 \end{bmatrix}$$

is

- (A) -11a.
- (B) -12a.
- (C) -13a.
- (D) -14a.
- (E) -15a.
- 15. (10%) Let A and B be 4×4 matrices, with det A = -1 and det B = 2. Then, det $B^{-1}AB + \det A^TA + \det 2A =$
 - (A) -12.
 - (B) -14.
 - (C) -16.
 - (D) -18.
 - (E) -20.