國立中山大學 106 學年度碩士暨碩士專班招生考試試題

科目名稱:機率【通訊所碩士班甲組】

題號:437005

※本科目依簡章規定「可以」使用計算機(廠牌、功能不拘)(混合題)

共3頁第1頁

選擇題(單選,計分方式:不倒扣,答對得該題全部分數,答錯及未作答得零分)

1. (5%) Let $S = \{1, 2, 3, 4\}$ be a sample space of an experiment. If G is the smallest field that contains the sets $\{1\}$ and $\{2,3\}$, which of the following sets is also contained in G?

- (A) $\{3\}$
- (B) $\{4\}$
- (C) $\{1,3\}$
- (D) $\{2,4\}$
- (E) $\{1,3,4\}$

2. (5%) Let X be a random variable with probability mass function given by

$$p_X(x) = \begin{cases} x^2 / a, & \text{if } x = -3, -2, -1, 0, 1, 2, 3, \\ 0, & \text{otherwise.} \end{cases}$$

What is the variance of X?

- (A) 28
- (B) 14
- (C) 9
- (D) 7
- (E) 1

3. (5%) Suppose that X and Y are random variables with the same variance σ^2 . What is the covariance of X-Y and X+Y?

- (A) 0
- (B) 1
- (C) σ^2
- (D) $2\sigma^2$
- (E) σ^4

4. (5%) Let X be a random variable. Let $M_X(s)$ be the moment generating function associated with X. Which of the following expressions cannot be $M_X(s)$?

(A)
$$M_X(s) = \frac{e^s}{3 - 2e^s}$$

(B)
$$M_X(s) = \frac{1}{4}e^{-s} + \frac{1}{2} + \frac{1}{8}e^{4s} + \frac{1}{8}e^{5s}$$

(C)
$$M_X(s) = \frac{1}{3} \cdot \frac{3}{2-s} + \frac{2}{3} \cdot \frac{2}{3-s}$$

(D)
$$M_X(s) = \frac{e^{3s}}{1 - 2s}$$

(E)
$$M_X(s) = \frac{2}{2-s}e^{3(e^s-1)}$$

國立中山大學 106 學年度碩士暨碩士專班招生考試試題

科目名稱:機率【通訊所碩士班甲組】

※本科目依簡章規定「可以」使用計算機(廢牌、功能不拘)(混合題)

題號: 437005

- 共3頁第2頁 5. (5%) A six-sided die is rolled three times independently. What is the probability that we obtain a sum of 12?
 - (A) 1/6
 - (B) 1/18
 - (C) 1/36
 - (D) 1/216
 - (E) 25/216.
- 6. (5%) Two coins are tossed simultaneously. If one of them turned head, what is the probability that the other one also turn head?
 - (A) 0.1
 - (B) 0.25
 - (C) 0.5
 - (D) 0.75
 - None of these (E)
- 7. (5%) If the pdf of a continuous random variable is given as

$$f(x) = \begin{cases} x/2, & 0 \le x \le 2, \\ 0, & \text{otherwise,} \end{cases}$$

what is the value of P(X = 1)?

- (A)
- 0.25 (B)
- (C) 0.5
- (D)
- (E) None of these
- 8. (5%) If a continuous random variable X has the pdf

$$f(x) = \frac{1}{\pi} \cdot \frac{1}{1+x^2}, \quad -\infty < x < \infty,$$

what is its mean?

- (A) 0
- (B) 1
- (C) π
- (D) $ln(1+\pi)$
- None of these
- 9. (5%) If a continuous random variable X has the pdf

$$f(x) = \frac{1}{2}e^{-\frac{x}{2}}, \qquad x \ge 0.$$

Which of the following statements is wrong?

- $P(0 \le x \le 2) = e^{-1}$ (A)
- $\mathbf{E}[X] = 2$ (B)
- (C) Var[X] = 8
- The CDF of X is

$$F(x) = 1 - e^{-\frac{x}{2}}, \qquad x \ge 0.$$

(E) None of these

國立中山大學 106 學年度碩士暨碩士專班招生考試試題

科目名稱:機率【通訊所碩士班甲組】

題號: 437005

※本科目依簡章規定「可以」使用計算機(廠牌、功能不拘)(混合題)

共3頁第3頁

10. (5%) Consider two i.i.d. random variables X_1 and X_2 with Poisson distribution:

$$P(X_i = k) = \frac{\lambda^k e^{-\lambda}}{k!}, \qquad k = 0,1,2,3,....$$

Which of the following statements is wrong?

- (A) The mean of X_i is λ
- (B) The variance of X_i is λ
- (C) The moment generating function of X_i is $e^{\lambda(e^t-1)}$
- (D) $X_1 + X_2$ is Poisson distributed
- (E) None of these

問答計算題:

1. (10%) Consider two discrete random variables X and Y with joint pmf:

401 0110 002001				
	P(x,y)	X = -1	X = 0	X = 1
Ì	Y=2	0.15	0.15	0.1
l	Y = 4	0.05	0.1	0.15
	Y=6	0.1	0.15	0.05

- (a) (5%) Are X and Y independent? Prove it or disprove it.
- (b) (5%) Are X and Y uncorrelated? Prove it or disprove it.

2. (15%) Consider a random variable X with pmf:

$$P(X = x) = \begin{cases} 0.4, & x = \pm 1, \\ 0.2, & x = 0. \end{cases}$$

Given X = x, the conditional distribution of a random variable Y is Gaussian with N(x, 1).

- (a) (5%) Find the marginal distribution of Y.
- (b) (5%) Find the conditional probability P(X = 1|Y = 1).
- (c) (5%) Find the conditional mean E[X|Y=1]
- 3. (10%) An exponential random variable has a PDF of the form

$$f_{z}(z) = \begin{cases} \lambda e^{-\lambda z}, & \text{if } z \ge 0, \\ 0, & \text{otherwise,} \end{cases}$$

where λ is a positive parameter. Suppose that X and Y are independent exponential random variables with common parameter λ . Please find $E[\max(2X,Y)]$.

4. (15%) Let X be a random variable that takes nonnegative integer values, and is associated with a moment generating function of the form

$$M_X(s) = \frac{2}{9} \cdot \frac{3 + 4e^{2s} + 2e^{3s}}{3 - e^s}.$$

- (a) (5%) Find E[X].
- (b) (10%) Find $E[X | X \neq 0]$.