國立中山大學 106 學年度碩士暨碩士專班招生考試試題

科目名稱:熱力學【材光系碩士班乙組】

題號: 439006

※本科目依簡章規定「可以」使用計算機(廠牌、功能不拘)(問答申論題)

共2頁第1頁

請於答案卷上依序做答,並清楚標明題號

- 1. (30%) (a, 5%) Define the partial molar property $\overline{M_i}$, the chemical potential μ_i , the fugacity (f_i) , the activity (a_i) and activity coefficient (r_i) of species i in a solution. (b, 5%) What are the relationships of the chemical potential μ_i of each species in all phases when the multiple phases at the same T and P are in equilibrium? (c, 5%) Draw a schematic A-B binary T-x (temperature-composition) phase diagram with a liquid phase and a solid solution phase (label all phase regions). (d, 5%) Draw a schematic A-B binary T-x phase diagram with a vapor phase, a liquid phase and a minimum azeotrope (label all phase regions). (e, 5%) Draw a schematic A-B binary T-x phase diagram with a liquid phase, two terminal solid phases (α and β) and a eutectic reaction (label all phase regions). (f, 5%) Draw a schematic A-B binary T-x phase diagram with a liquid phase, two terminal solid phases (α and β) and a peritectic reaction (label all phase regions).
- 2. (20%) (a, 5%) The complete differential internal energy U can be written in terms of the partial derivative $dU = \left(\frac{\partial U}{\partial V}\right)_T dV + \left(\frac{\partial U}{\partial T}\right)_V dT$, please derive the relation C_p - C_V =R for one mole of ideal gas. (b, 5%) Prove that the process path of an ideal gas undergoing a reversible adiabatic change of state is described by PV^r =constant, where P is the pressure, V refers to the volume and γ = C_p / C_v . (c) Air at an initial state of 47° C, 0.2 MPa, fallows a process until it reaches a final state 267° C,0.8MPa. Assume the air is an ideal gas with constant specific heat. The specific heat is C_p =1.017 (KJ/KgK) and gas constant is R=0.287 (KJ/KgK). Calculate the entropy change per unit mass during the process, assuming the following (i, 5%) The process is reversible. (ii, 5%) The process is irreversible.
- 3. (10%) Please prove the following statement: for two given heat reservoirs no engine can have a thermal efficiency higher than that of a Carnot engine.
- 4. (20%) A vessel, divided into two parts by a partition, contains 6 moles of nitrogen gas at 400K and 5 bar on one side and 4 moles of argon gas at 400K and 5 bar on the other side. The molar Gibbs free energies of nitrogen gas and argon gas at 400K and 5 bar are \overline{G}_{N2} and \overline{G}_{Ar} , respectively. (a, 5%) What is the molar Gibbs free energy of the gas in the vessel? (b, 5%) If the partition is removed and the gases mixed adiabatically and completely, what is the molar Gibbs free energy of the gas in the vessel after mixing? (c, 5%) What are the entropy of mixing, enthalpy of mixing, and Gibbs free energy of mixing? (d, 5%) What are the excess entropy of mixing, excess enthalpy of mixing, and excess Gibbs free energy of mixing? Assume nitrogen to be an ideal gas with $C_v=2.5R$ and Argon to be an ideal gas with $C_v=1.5R$. R is the gas constant.
- 5. **(20%)** The melting point T^m and the latent heat of fusing $\triangle H^m$ of Aluminum are 932K and 10.8 (KJ/mole), respectively. The allotropic phase transformation from α -Mn to β -Mn occurs at 1000K and one atmosphere pressure. The entropy change for the phase transformation is 2.25 (J/mole K). Calculate \triangle S for the following reaction at 1400 K and one atmosphere pressure. $MnSiO_{3(S)} + 2Al_{(I)} = Al_2O_{3(S)} + Mn_{(S)} + Si_{(S)}$.

Given that the constant-pressure molar heat capacity of various substances as follows:

國立中山大學 106 學年度碩士暨碩士專班招生考試試題

科目名稱:熱力學【材光系碩士班乙組】

題號: 439006

※本科目依簡章規定「可以」使用計算機(廠牌、功能不拘)(問答申論題) 共

共2頁第2頁

MnSiO_{3(S)}: S₂₉₈=89.5 (J/mole K)

Al(S): S₂₉₈=28.4 (J/mole K)

 $Al_2O_{3(S)}$: S₂₉₈=51.1 (J/mole K)

Mn(S): S₂₉₈=31.9 (J/mole K)

 $Si_{(S)}:S_{298}=18.9$ (J/mole K)

 $C_P(MnSiO_{3(S)}) = 110.0 + 16.1 \times 10^{-3} T - 25.8 \times 10^5 T^{-2} (J/mole K)$ 298K < T < 1300K

 $C_P(Al_{(S)}) = 20.7 + 12.4 \times 10^{-3} T(J/mole K)$ 298 K < T < 1300 K

 $C_P(Al_{(I)}) = 29(J/mole K)$ 298K < T < 1300K

 $C_P(Al_2O_{3(S)}) = 106.6 + 7.8 \times 10^{-3} T - 28.5 \times 10^5 T^{-2} (J/mole K)$ 298K < T < 1300K

 $C_P(\alpha Mn_{(S)}) = 21.6 + 15.9 \times 10^{-3} T(J/mole K)$ 298K < T < 1300K

 $C_P(\beta Mn_{(S)}) = 34.9 + 2.8 \times 10^{-3} T(J/mole K)$ 298K < T < 1300K

 $C_P(Si_{(S)}) = 24.3 + 2.3 \times 10^{-3} T - 4.5 \times 10^5 T^{-2} (J/mole K)$ 298K < T < 1300 K

Conversion factor:

Pressure: 1 bar=10⁵ Kgm⁻¹S⁻²=10⁵Pa=0.986923 atm Energy: 1J= 1Kgm²s⁻²=1 Nm=1 m³Pa= 0.239006 cal

Gas constant:

R=8.314 J/moleK=8.314 m³Pa/moleK=1.987 Cal/moleK