國立中山大學 106 學年度碩士暨碩士專班招生考試試題

科目名稱:工程數學【資工系碩士班乙組】

題號: 434002

※本科目依簡章規定「不可以」使用計算機(問答申論題)

共1頁第1頁

- 1. (16%) If A is an $n \times n$ matrix, then A is called **idempotent** if $A^2 = A$. Let A and B be $n \times n$ idempotent matrices.
- 1.1 (4%) Show that AB is idempotent if AB = BA.
- 1.2 (4%) Show that if A is idempotent, then A^T is idempotent.
- 1.3 (4%) Is A+B idempotent? Justify your answer.
- 1.4 (4%) Find all values of k for which kA is also idempotent.
- 2. (16%) A periodic signal x(t) with a period $T_0 = 10$, $0 \le t \le 10$ by the equation $x(t) = \begin{cases} 0 & 0 \le t \le 5 \\ 2 & 5 < t \le 10 \end{cases}$
- 2.1 (4%) Sketch the periodic function x(t) over the time interval $-10 \le t \le 20$.
- 2.2 (4%) Determine the DC coefficient of the Fourier series, a_0 .
- 2.3 (4%) Use the Fourier analysis integral to find a_1 , the first Fourier series coefficient.
- 2.4 (4%) If we add a constant value of one to x(t), we obtain the signal y(t) = 1 + x(t) with y(t) given over

one period by
$$y(t) = \begin{cases} 1 & 0 \le t \le 5 \\ 3 & 5 < t \le 10 \end{cases}$$

The signal can be represented by a Fourier series, but with different coefficients: $y(t) = \sum_{k=-\infty}^{\infty} b_k e^{jk\omega_0 t}$.

Explain how b_0 and b_1 are related to a_0 and a_1 . Note: you should not have to evaluate any new integrals explicitly to answer this question.

- 3. (18%) The matrix is $A = \begin{bmatrix} 2 & 1 & 2 \\ 2 & 2 & -2 \\ 3 & 1 & 1 \end{bmatrix}$
- 3.1 (3%) Find the characteristic polynomial.
- 3.2 (6%) Find the eigenvalues,
- 3.3 (9%) And Find the associated eigenvectors.
- 4. (20%) Using Laplace transform and showing the details of your work, solve the initial value problem.

$$y_1' = -2y_1 + 3y_2$$
, $y_2' = 4y_1 - y_2$, $y_1(0) = 4$, $y_2(0) = 3$,

5. (14%) Find the general solution of the following differential equation.

$$y'' + 4y' + 4y = e^{-2x} \sin 2x$$

6. (16%) Solve the following initial value problem.

$$y''' - 2y'' + 4y' - 8y = 0$$
, $y(0) = -1$, $y'(0) = 30$, $y''(0) = 28$,