國立中山大學 106 學年度碩士暨碩士專班招生考試試題

科目名稱:離散數學【資工系碩士班甲組】 ※本科目依簡章規定「不可以」使用計算機(問答申論題)

題號: 434004

共1頁第1頁

There are 7 problems in this test. No calculators are allowed. Write down detailed steps for the solution to each problem. Otherwise, no credits for that problem will be given.

- 1. (10) Let x_1, x_2, \ldots, x_n be a sequence of n integers. A consecutive subsequence of x_1, x_2, \ldots, x_n is a subsequence $x_i, x_{i+1}, \ldots, x_j$ for some $i, j, 1 \le i \le j \le n$. Show that for any $k, 1 \le k \le n$, there is a consecutive subsequence whose sum is divisible by k.
- 2. (10) Assume that a sequence of numbers is defined by $x_0 = 0$, $x_1 = 1$, and $x_n + 2x_{n-1} = 15x_{n-2}$ for n > 1. Find generating function for the sequence, and then find an explicit expression for x_n .
- 3. (10) Show that $\binom{n}{k} = \binom{n-1}{k} + \binom{n-1}{k-1}$. Give combinatorial explanation to the equation.
- 4. (30) A bipartite graph is a graph whose vertices can be partitioned into two subsets X and Y so that each edge has one end in X and the other end in Y. A cycle of G is a sequence of vertices v_0, v_1, \ldots, v_l such that each vertex v_i is distinct, except $v_0 = v_l$, and v_{i-1} and v_i are adjacent for each $i=1,2,\ldots,l$. The length of the cycle is l. A k-cube is a graph whose vertices are binary strings of length k, for some integer k > 0. Two vertices are adjacent if and only if they differ in exactly one bit.
 - (a) Show that every k-cube is bipartite by partitioning its vertexes into X and Y, and then show that every edge connects some vertex in X and another vertex in Y. (10)
 - (b) Show that a bipartite graph has no cycles of odd length. (10)
 - (c) Show that if a graph has no cycles of odd length then it is bipartite. (10)
- 5. (10) Suppose that 5 points are chosen in a square whose sides have length 2. Show that there must be at least two points p and q such that the distance between them is no more than $\sqrt{2}$.
- 6. (10) Fibonacci numbers are defined as $f_0 = 0$, $f_1 = 1$ and $f_n = f_{n-1} + f_{n-2}$ for n > 1. Show that f_{3k} is even, for every positive integer k.
- 7. (20) Let m and n be two positive integers, $m \le n$. Define $\binom{n}{m} = \frac{n!}{m!(n-m)!}$.
 - (a) Show that if n is prime, then n divides $\binom{n}{i}$ for every $i, 1 \le i < n$. (10)
 - (b) Show that if n is composite, then n does not divide $\binom{n}{i}$ for some $i, 1 \le i < n$.