國立中山大學 106 學年度碩士暨碩士專班招生考試試題

科目名稱:工程數學【機電系碩士班乙組、丙組】

題號:438002

※本科目依簡章規定「可以」使用計算機(廠牌、功能不拘)(問答申論題)

共1頁第1頁

1. (20%) Solve the following ODEs.

(a)
$$y' = (-2x + y)^2 - 7$$
, $y(0) = 0$. (10%)

(b)
$$y'' - 2y' + y = 35x^{3/2}e^x$$
. (10%)

2. (15%) Solve
$$y'' + y = \begin{cases} 2t, & 0 < t < \frac{\pi}{2} \\ 0, & t > \frac{\pi}{2} \end{cases}$$
 with
$$\begin{cases} y\left(\frac{\pi}{4}\right) = \frac{\pi}{2} \\ y'\left(\frac{\pi}{4}\right) = 2 - \sqrt{2} \end{cases}$$
 by using the Laplace transform.

3. (15 %) Tank T_1 in Fig. 1 initially contains 300 gal of water in which 150 lb of salt are dissolved. Tank T_2 initially contains 200 gal of pure water. Liquid is pumped through the system as indicated, and the mixtures are kept uniform by stirring. Find the amounts of salt $y_1(t)$ and $y_2(t)$ in T_1 and T_2 , respectively.

Fig. 1

- 4. (15%) Multiple choice problem. Suppose A is a n × n matrix with rank n. In the following statements, which ones are true?
 - (a) A is a singular matrix.
 - (b) $\det(A) = 0$.
 - (c) The nullity of A is n.
 - (d) The column rank of A is n.
 - (e) Ax = 0 has only a trivial solution x = 0.
 - (f) Ax = b has an unique solution $x = A^{-1}b$.
 - (g) The column vectors are linearly dependent.
 - (h) The row vectors of \mathbf{A} span \mathbb{R}^n .
 - (i) A is diagonalizable.
- 5. (15%) Compute the flux of a liquid through the surface $S: x^2 + y^2 = 4$, $|z| \le 2$, where the velocity field is $F = [\sin(x), \cos(x), \cos(z)]$. (Hint: Divergence theorem of Gauss)
- 6. (20%) The vibrating string can be modeled by one-dimensional wave equation $\frac{\partial^3 u}{\partial x^2} = c^2 \frac{\partial^3 u}{\partial x^2}$. Consider a plastic string of length $L = \pi$ with fixed ends and $c^2 = 1$. It initially has zero displacement and the following velocity:

$$u_{t}(x,0) = \begin{cases} u_{t}(x,0) = 0.01x, & \text{if } 0 \le x \le \frac{1}{2}\pi \\ u_{t}(x,0) = 0.01(\pi - x), & \text{if } \frac{1}{2}\pi \le x \le \pi \end{cases}$$

Find the displacement u(x,t) of the string.