科目名稱:工程數學乙【電機系碩士班乙組】

題號:431001

※本科目依簡章規定「可以」使用計算機(廠牌、功能不拘)(選擇題)

共5頁第1頁

第一題到第六題為單選題,每題四分。請選出一個最正確選項,答錯不倒扣。

- 1. When using the Gaussian elimination to solve a linear equation $A\mathbf{x} = \mathbf{b}$, elementary row operations (or multiplication by elementary matrices) are applied to the augmented matrix $[A\ \mathbf{b}]$. Actually, there are many places in linear algebra where such a technique plays its role; e.g., the null space of A can be determined by setting $\mathbf{b} = 0$. Which of the following cannot be determined by applying such a technique?
 - (A) the range of A
 - (B) the inverse of A (if it is nonsingular)
 - (C) the QR factorization of A
 - (D) the LU factorization of A (if it is square)
 - (E) the determinant of A (if it is square).
- 2. Consider the system represented by the differential equation $\ddot{x} + \dot{x} + kx = 0$. Which of the following is true? (A) the system is critically damped when k = 1 (B) the system is underdamped when k = 1/2 (C) the system is overdamped when k = 0.3 (D) the damping ratio of the system is increased when increasing k (E) none of the above
- 3. Consider the differential equation $\ddot{x} + b\dot{x} + kx = \cos(\omega t)$ and its sinusoidal solution $x_p(t)$. Which of the following is true? (A) for a fixed b, the amplitude of $x_p(t)$ is maximized when $k = \omega^2$ (B) for a fixed b, the maximal amplitude of $x_p(t)$ is 1/b (C) for fixed b and k, the amplitude of $x_p(t)$ always grows as ω increases (D) the period of $x_p(t)$ is 2ω (E) the period of $x_p(t)$ depends on b and k.
- 4. Consider the differential equation $t\dot{x} + x = \cos(\omega t)$. Which of the following is true? (A) the general solution is $\sin(\omega t) + C$, C is a constant. (B) the particular (forced) solution is periodic with period ω (C) the solution is NOT bounded when t grows to infinity (D) If $x(\pi/\omega) = 1$, then the solution is $(\sin(\omega t) + \pi)/(\omega t)$ (E) none of the above
- 5. Consider a system whose dynamics is governed by a linear constant-coefficient ODE. Suppose the impulse response of this system is $e^{-t} e^{-3t}$. Which of the following is true? (A) the system is 2^{nd} order (B) the system is 3^{rd} order (C) the characteristic equation of the system has a pair of complex roots (D) one root of the characteristic equation is less than -5 (E) response to a step function does NOT converge to a constant value
- 6. Consider the system described in Question 5 again. The unit step response of this system
 - (A) has oscillatory behavior
 - (B) converges to 1
 - (C) converges to 1/3
 - (D) is $1/4 e^{-3t}/3 + e^{-t}$
 - (E) is $-e^{-t} + (2 + e^{-3t})/3$

第七題到第十題為單選題,每題五分。請選出一個最正確選項,答錯不倒扣。

7. What is the solution to the ODE $t\dot{x} = 4t - 3x$? (A) $x(t) \equiv \text{constant}$ (B) $x(t) = -ct^3$ (C) $x(t) = ct^{-3} + t$ (D) $x(t) = ce^{-3t} + 4t$ (E) none of the above

科目名稱:工程數學乙【電機系碩士班乙組】

※本科目依簡章規定「可以」使用計算機(廠牌、功能不拘)(選擇題)

題號: 431001 共5頁第2頁

8. Consider the heat equation

$$\frac{\partial u}{\partial t}(x,t) = 4 \frac{\partial^2 u}{\partial x^2}(x,t), \quad \forall 0 < x < 1, \ t > 0$$

$$u(0,t) = u(1,t) = 0 \quad \forall t > 0$$

$$u(x,0) = f(x), \quad \forall 0 < x < 1$$

- (A) the heat equation is nonlinear
- (B) without considering the boundary condition, the general solution is $\sum_{n=1}^{\infty} c_n \sin(n\pi x) e^{-4n^2\pi^2 t}$
- (C) suppose $f(x) = 7\sin(3\pi x)$, then the solution is $u(x,t) = 7\sin(3\pi x)e^{-4n^2\pi^2t}$
- (D) all of the above are true
- (E) none of the above is true
- 9. The linear combination of a set of vectors is an essential element in linear algebra. We say a set V is invariant under linear combination if the implication " $\forall n \in \mathbb{N}$ and any set of vectors $\{\mathbf{v}_1, \cdots, \mathbf{v}_n\} \subset V \Rightarrow$ the set of all linear combinations $\{c_1\mathbf{v}_1 + \cdots + c_n\mathbf{v}_n | c_i \in \mathbb{R}, \forall i\} \subset V$ " holds. And we say a mapping L defined on a set X is invariant under linear combination if the form of linear combination is unchanged under L, or more precisely the statement " $\forall n \in \mathbb{N}, \forall c_i \in \mathbb{R}$, and any set of vectors $\{\mathbf{x}_1, \cdots, \mathbf{x}_n\} \subset X$, the identity $L(c_1\mathbf{x}_1 + \cdots + c_n\mathbf{x}_n) = c_1L(\mathbf{x}_1) + \cdots + c_nL(\mathbf{x}_n)$ holds" is true. Which one of the following statements related to linear combination is false?
 - (A) Let S be a subset of a vector space V. Then S is a subspace of V if S is invariant under linear combination.
 - (B) Let $\{V_1, \dots, V_k\}$ be a set of k subspaces of a vector space W and denote $\operatorname{span}\{V_1, \dots, V_k\}$ as the set of all linear combinations of the form $c_1\mathbf{v}_1+\dots+c_n\mathbf{v}_n$, with each \mathbf{v}_i chosen freely from V_i . Then $\operatorname{span}\{V_1, \dots, V_k\}$ is also a subspace of W with $\dim(\operatorname{span}\{V_1, \dots, V_k\}) = \dim(V_1) + \dots + \dim(V_k)$
 - (C) Let A and B be two matrices and denote C := AB. Then each column of C is a linear combination of all columns of A, and so $rank(C) \le rank(A)$ is implied.
 - (D) A mapping L between two vector spaces is a linear transformation if and only if it is invariant under linear combination.
 - (E) Let $(V, \langle \cdot, \cdot \rangle_V)$ be an inner product space. Then $\langle \cdot, \cdot \rangle_V$ is invariant under linear combination at either one of its two arguments.
- 10. Let U, V, W be vector spaces and $T: U \to V$, $S: V \to W$ be linear transformations. Also denote the set of all linear transformations from V to W by $\mathcal{L}(V, W)$ (e.g. $S \in \mathcal{L}(V, W)$). Which one of the following statements is false?
 - (A) The set $(\mathcal{L}(V, W), +, \bullet)$, where $(\alpha \bullet S_1 + \beta \bullet S_2)(\mathbf{v}) = \alpha \cdot S_1(\mathbf{v}) + \beta \cdot S_2(\mathbf{v})$ for any $\mathbf{v} \in V$, $S_i \in \mathcal{L}(V, W)$, and $\alpha, \beta \in \mathbb{R}$, is also a vector space with $\dim \mathcal{L}(V, W) = \dim V + \dim W$.
 - (B) The mapping $ST(\cdot)$ defined as $ST(\mathbf{u}) := S(T(\mathbf{u}))$ for any $\mathbf{u} \in U$ is also a linear transformation from U to W.
 - (C) If both S and T are one-to-one, then their combination $ST(\cdot)$ is also one-to-one.
 - (D) If $S:V\to W$ is invertible, then the mapping S^{-1} from W to V is also a linear transformation.
 - (E) Suppose that the combination $ST(\cdot)$ is onto. Then at least one of S and T is onto.

科目名稱:工程數學乙【電機系碩士班乙組】

題號:431001

※本科目依簡章規定「可以」使用計算機(廠牌、功能不拘)(選擇題)

共5頁第3頁

第十一題到第十六題為<u>多選題</u>,每題六分。請選出<u>所有正確</u>選項;答題<u>完全正確</u>得滿分,答錯任何選項則該題以零分計,沒有倒扣。

- 11. The *linear independence* is without doubt one of the most important concepts in linear algebra. Which of the following statements about this concept are true?
 - (A) The number of linearly independent columns of any matrix is equal to the number of linearly independent rows of the matrix.
 - (B) A set of vectors $\{\mathbf{v}_1, \dots, \mathbf{v}_n\}$ is linearly independent if there exist coefficients c_1, \dots, c_n , all of them are zero, such that $c_1\mathbf{v}_1 + \dots + c_n\mathbf{v}_n = \mathbf{0}$.
 - (C) The linear independence of a set of vectors is a necessary but not sufficient condition for them to be a basis of a vector space.
 - (D) A square matrix is diagonalizable if and only if all its eigenvectors are linearly independent.
 - (E) Let $(\lambda_i, \mathbf{x}_i)$ be the *i*th eigenvalue-eigenvector-pair of a square matrix. Then all $\lambda_i's$ are distinct if and only if the set $\{\mathbf{x}_1, \dots, \mathbf{x}_n\}$ of eigenvectors is linearly independent.
- 12. Let V = C[-1, 1] be the vector space of all continuous functions defined on [-1, 1], and let V_e and V_o denote, respectively, the set of all even and all odd functions in V. Moreover, define an inner product $\langle f, g \rangle := \int_{-1}^{1} f(x)g(x)dx$ for any $f(\cdot)$, $g(\cdot) \in V$. Which of the following statements are true?
 - (A) Both V_e and V_o are subspaces of V.
 - (B) $V = V_e + V_o$ and $V_e \cap V_o = \mathbf{0}$.
 - (C) $V_e = V_o^{\perp}$ and $V_o = V_e^{\perp}$.
 - (D) $\dim V = \dim V_e + \dim V_o$.
 - (E) Denote $\operatorname{dist}(f, V_e)$ as the distance induced from the defined inner product between any $f(\cdot) \in V$ and V_e . Then $\operatorname{dist}((x+1)^2, V_e) = \sqrt{8/3}$.
- 13. Which of the following statements are true?
 - (A) Given A and b of proper dimensions, when $b \not\in R(A)$ the linear equation Ax = b has no solution. However, the associated LSP (least squares problem) is always solvable and the solution is unique.
 - (B) Let V be a vector space such that $V = X \oplus Y$. Then only when $X \perp Y$, i.e. the two subspaces are orthogonal, can two projection mappings, say $P:V \to X$ and $Q:V \to Y$, be defined with the complementary property P+Q=I, where I indicates the identity mapping on V.
 - (C) (continue from (B)) The projections P and Q become orthogonal projections when $X \perp Y$. Moreover, once the bases for X and Y are chosen, their union forms a basis for V, and the two projection matrices associated with projections P and Q with respect to this set of bases are all symmetric.
 - (D) Any projection mapping is a linear transformation that is definitely onto, but may not be one-to-one.
 - (E) Consider the vector space C[-1, 1] with an inner product $\langle f, g \rangle := \int_{-1}^{1} f(x)g(x)dx$. Then the set $\{\mathbf{u}_1, \mathbf{u}_2\}$ with $\mathbf{u}_1 = 1/\sqrt{2}$ and $\mathbf{u}_2 = (\sqrt{6}/2)x$ forms an orthonormal set in C[-1, 1]. Moreover, the best least squares approximation to $h(x) = x^2$ by a linear function is $\hat{h}(x) = (\sqrt{2}/3) + (\sqrt{6}/4)x$.

背面有題

科目名稱:工程數學乙【電機系碩士班乙組】

題號:431001

※本科目依簡章規定「可以」使用計算機(廠牌、功能不拘)(選擇題)

共5頁第4頁

- 14. Let $E := \{\mathbf{u}_1, \dots, \mathbf{u}_n\}$ be a basis of \mathbb{R}^n and $F := \{\mathbf{v}_1, \dots, \mathbf{v}_n\} \subset \mathbb{R}^n$ with the property $\forall i, j = 1, \dots, n$ $\mathbf{u}_i^T \mathbf{v}_i = 1$ when i = j, and $\mathbf{u}_i^T \mathbf{v}_i = 0$ when $i \neq j$. Which of the following statements are true?
 - (A) F is also a basis of \mathbb{R}^n , and the coordinate vector of any $\mathbf{x} \in \mathbb{R}^n$ with respect to base F is $\begin{bmatrix} \mathbf{x}^T \mathbf{v}_1 \\ \vdots \\ \mathbf{x}^T \mathbf{v}_n \end{bmatrix}$.
 - (B) Any $\mathbf{x} \in \mathbb{R}^n$ can be represented as $\mathbf{x} = c_1 \mathbf{u}_1 + \cdots + c_n \mathbf{u}_n$ with $c_i = \mathbf{x}^T \mathbf{u}_i$ for each i.
 - (C) Denote the transition matrix from base E to base F by S. Then $S(i, j) = \mathbf{u}_i^T \mathbf{u}_j$ for $i, j = 1, \dots, n$.
 - (D) The transition matrix from base F to base E can be described by $([\mathbf{v}_1]_E \cdots [\mathbf{v}_n]_E)$, where $[\mathbf{v}_i]_E$ denotes the coordinate vector of \mathbf{v}_i with respect to base E.
 - (E) Denote $U := [\mathbf{u}_1 \cdots \mathbf{u}_n]$ and $V := [\mathbf{v}_1 \cdots \mathbf{v}_n]$. Then $U\mathbf{x} = \lambda \mathbf{x}$ for some $\mathbf{x} \neq \mathbf{0}$ iff $(\overline{\mathbf{x}})^T V = (\overline{\lambda})^{-1} (\overline{\mathbf{x}})^T$, where the upper bar means to take the complex conjugate.
- 15. For any given $0 \neq \mathbf{w} \in \mathbb{R}^n$, let's consider the matrix $H_{\alpha} = I \alpha (\mathbf{w}^T \mathbf{w})^{-1} \mathbf{w} \mathbf{w}^T$ parameterized by a real scalar α . Which of the following statements are true?
 - (A) $H_{\alpha} = H_{\alpha}^2$, i.e. H_{α} is an idempotent matrix, if and only if $\alpha \in \{0, 1, 2\}$.
 - (B) $H_{\alpha}^2 \mathbf{x} = \mathbf{x}$ for any $\mathbf{x} \in \mathbb{R}^n$ if and only if $\alpha \in \{0, 1, 2\}$.
 - (C) H_{α} is singular if and only if $\alpha = 1$.
 - (D) For any $x \in \mathbb{R}^n$, $H_{\alpha}x \in \mathbf{w}^{\perp}$, the orthogonal complement of \mathbf{w} , if and only if $\alpha = 1$.
 - (E) For any $\mathbf{x} \in \mathbb{R}^n$, $\min_{\alpha \in \mathbb{R}} \|H_{\alpha}\mathbf{x}\|_2 = \|H_1\mathbf{x}\|_2$, i.e. $H_{\alpha}\mathbf{x}$ has the smallest 2-norm if and only if $\alpha = 1$.
- 16. Let $A = A^H := (\overline{A})^T$ be a nonzero matrix of size $n \times n$ with its real part and imaginary part being denoted by B and C, respec 7. tively. Moreover, let be a symmetric matrix with and as its four blocks. Which of the following statements are true?
 - (A) Matrix C has at least one real eigenvalues.
 - (B) Let λ and μ be any two eigenvalues of B and C, respectively. Then $\lambda + \mu \neq 0$.
 - (C) Any eigenvalue of A is also an eigenvalue of Ω .
 - (D) Any eigenvalue of Ω is also an eigenvalue of A.
 - (E) Let $(\lambda, \begin{bmatrix} \mathbf{x} \\ \mathbf{y} \end{bmatrix})$ be an eigenvalue-eigenvector-pair of Ω . Then $(\lambda, \mathbf{x} + i\mathbf{y})$ is an eigenvalue-eigenvector-pair of A.

科目名稱:工程數學乙【電機系碩士班乙組】

題號: 431001

※本科目依簡章規定「可以」使用計算機(廠牌、功能不拘)(選擇題)

共5頁第5頁

第十七題到第二十題為<u>多選題</u>,每題五分。請選出<u>所有正確</u>選項;答對一個選項得一分,答錯一個選項<u>倒扣零點五分</u>。

- 17. Let $\mathcal{L}(\cdot)$ denote the Laplace transform. Which of the followings are true?
 - (A) $\mathcal{L}(\alpha_1 \cdot f_1 + \alpha_2 \cdot f_2) = \alpha_1 \cdot \mathcal{L}(f_1) + \alpha_2 \cdot \mathcal{L}(f_2)$, for all $\alpha_1, \alpha_2 \in \mathbb{R}$ and for all functions f_1, f_2
 - (B) if $\mathcal{L}(f) = F(s)$, then $\mathcal{L}(\frac{d}{dt}f) = sF(s)$
 - (C) if $\mathcal{L}(f) = F(s)$, then $\mathcal{L}(e^{\alpha t} \cdot f) = F(s)/(s + \alpha)$
 - (D) if $\mathcal{L}(f) = F(s)$, then $\mathcal{L}(t^2 \cdot f) = \frac{d^2}{ds^2} F(s)$
 - (E) if $\mathcal{L}(f) = F(s)$ and $\mathcal{L}(g) = G(s)$, then $\mathcal{L}(f \cdot g) = (F * G)(s)$, where * denotes convolution operation
- 18. Consider the differential equation $m\ddot{x}(t) + b\dot{x}(t) + kx(t) = u(t)$. Suppose $\frac{1}{2}t\sin(2t)$ is a solution when $u(t) = 4\cos(2t)$. Which of the followings are true?
 - (A) m = 1
 - (B) b = 0
 - (C) k = 8
 - (D) $2t\sin(t)$ is a solution when $u(t) = 8\cos(2t)$
 - (E) $\frac{1}{2}(t-\frac{1}{2})\sin(2t-1)$ is a solution when $u(t) = 4\cos(2t-1)$
- 19. Consider the homogeneous system $\begin{bmatrix} \dot{x}_1 \\ \dot{x}_2 \end{bmatrix} = A \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$, where $A = \begin{bmatrix} a & -2 \\ 2 & 1 \end{bmatrix}$
 - (A) the system is linear
 - (B) the system is time invariant
 - (C) the system has more than one equilibrium
 - (D) when a < -4, any initial condition results in a solution which diverges to infinity
 - (E) when -4 < a < -1, any initial condition results in a solution which converges to the origin
- 20. Consider the autonomous system $\begin{bmatrix} \dot{x}_1 \\ \dot{x}_2 \end{bmatrix} = \begin{bmatrix} x_1^2 x_2^2 \\ x_1^2 + x_2^2 8 \end{bmatrix}$
 - (A) the system is linear
 - (B) the system has two equilibria
 - (C) $(x_1, x_2) = (2, -2), (-2, -2)$ are equiliria of the system
 - (D) $(x_1, x_2) = (-2, -2)$ is the only stable equilibrium of the system
 - (E) $(x_1, x_2) = (2, -2)$ is a saddle equilibrium of the system.