國立中山大學 106 學年度碩士暨碩士專班招生考試試題 科目名稱:電子學【電機系碩士班甲組】 題號:431009 ※本科目依簡章規定「可以」使用計算機(廠牌、功能不拘)(問答申論題) 共2頁第1頁 1. (20%) Figure 1 shows the CS amplifier. The threshold voltage of transistor is -0.5 V. (a) Select a value for Rs to bias the transistor at $I_D = 0.4$ mA and $IV_{OV}I = 0.4$ V. Assume v_{sig} to have a zero DC component. (b) Select value for R_D that results in $v_o/v_{sig} = -8$ V/V. (c) Find the largest sinusoid v_{sig} peak that the amplifier can handle while remaining in the saturation region. (d) If to obtain reasonably linear operation, v_{sig} peak is limited to 40 mV, what value can R_D be increased to while maintaining saturation-region operation? (5%*4) - 2. (20%) Figure 2 shows the differential amplifier. Please find (a) the differential gain, (b) the differential input resistance, (c) the common-mode gain assuming the resistance R_C have 2% tolerance, and (d) the common-mode input resistance. For these transistors, $\beta = 100$, thermal voltage is 25.9 mV and Early voltage $V_A = 100$ V. (5%*4) - 3. (25%) Figure 3 shows a three-stage amplifier. (a) Find the DC bias collector current in each of the three transistors and DC bias output voltage V_o. Assume IV_{BE}I = 0.7 V, β = 100, thermal voltage is 25.9 mV and neglect the Early effect for all BJTs. (b) Find the input resistance R_{in}, output resistance R_{out}, and voltage gain v_o/v_i. (10%, 5%*3) - 4. (20%) For the CC-CB amplifier of Figure 4, let I = 1 mA, $\beta = 100$, $C_{\pi} = 8$ pF, $C_{\mu} = 3$ pF, $R_{\text{sig}} = 15$ $k\Omega$, $R_{L} = 20$ $k\Omega$, and thermal voltage is 25.9 mV. Find (a) the low-frequency overall voltage gain A_{M} , (b) the frequencies of the poles for the high frequency response, and (c) the 3-dB frequency f_{H} . All BJTs have the same β , C_{π} and C_{μ} . (5%, 10%, 5%) ## 國立中山大學 106 學年度碩士暨碩士專班招生考試試題 科目名稱:電子學【電機系碩士班甲組】 題號:431009 ※本科目依簡章規定「可以」使用計算機(廠牌、功能不拘)(問答申論題) 共2頁第2頁 5. (15%) Please only use the diode and capacitor components to draw the circuits of peak rectifier, DC restorer and voltage doubler to come out the stable output voltage: (a) -Va, (b) -Va + Va sin(ωt), (c) $-2V_a$, with a stable sinusoid input voltage $V_a \sin(\omega t)$ as shown in Figure 5. (5%*3) Figure 5